首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 β-strands forming a β-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the β-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions.  相似文献   

2.
Two regions in the crystal structure of yeast phenylalanine tRNA, where single-stranded loops interact by intercalation, have been examined in detail. There are four examples of a nucleotide base from one loop intercalating between two sequential bases of another loop in these two regions. These four dinucleoside phosphate conformations serve as models for intercalation in single-stranded nucleic acids. Double-stranded DNA and RNA polymers were constructed by computer model building methods, which incorporated the dinucleoside phosphate conformations found in these single-stranded, intercalation regions in otherwise standard double-helices. The results suggest that it is unlikely that there is a unique intercalation geometry for either single- or double-stranded nucleic acids, but that nucleic acids may assume one of a variety of intercalation geometries which will best accommodate a particular intercalating agent for a particular base sequence.  相似文献   

3.
A new method of incorporation of tritium into nucleic acids with an accompanying conversion of cytosine to uracil is proposed. The method is based on the reaction of nucleic acids with bisulfite in the presence of 3H2O. Under certain conditions poly(C) is quantitatively converted to a radioactive poly(U), whereas similar bisulfite treatment of poly(U) does not result in any tritium incorporation. Specificity of the reaction is confirmed by the results of analysis of modified tRNA and rRNA. Incubation of tRNA with bisulfite and 3H2O does not lead to cleavage of the polynucleotide chain. Similar treatment of the denatured DNA results in tritium incorporation into DNA which is accompanied by a conversion of cytosine to uracil. There is virtually no reaction between native DNA and bisulfite. Only certain cytosone residues in yeast tRNAVal/2a interact with bisulfate providing that reaction is carried out under sufficiently mild conditions.  相似文献   

4.
Binding of recombinant prion protein with small highly structured RNAs, prokaryotic and eukaryotic prion protein mRNA pseudoknots, tRNA and polyA has been studied by the change in fluorescence anisotropy of the intrinsic tryptophan groups of the protein. The affinities of these RNAs to the prion protein and the number of sites where the protein binds to the nucleic acids do not vary appreciably although the RNAs have very different compositions and structures. The binding parameters do not depend upon pH of the solution and show a poor co-operativity. The reactants form larger nucleoprotein complexes at pH 5 compared to that at neutral pH. The electrostatic force between the protein and nucleic acids dominates the binding interaction at neutral pH. In contrast, nucleic acid interaction with the incipient nonpolar groups exposed from the structured region of the prion protein dominates the reaction at pH 5. Prion protein of a particular species forms larger complexes with prion protein mRNA pseudoknots of the same species. The structure of the pseudoknots and not their base sequences probably dominates their interaction with prion protein. Possibilities of the conversion of the prion protein to its infectious form in the cytoplasm by nucleic acids have been discussed.  相似文献   

5.
Dehydrins are hydrophilic proteins that accumulate during embryogenesis and osmotic stress responses in plants. Here, we report an interaction between citrus dehydrin Citrus unshiu cold-regulated 15 kDa protein (CuCOR15) and DNA. Binding of CuCOR15 to DNA was detected by an electrophoretic mobility shift assay, a filter-binding assay and Southwestern blotting. The binding was stimulated by physiological concentrations of Zn2+, but little stimulation occurred when other divalent cations, such as Mg2+, Ca2+, Mn2+, Ni2+ and Cu2+, were substituted for Zn2+. Ethylenediaminetetraacetic acid cancelled the Zn2+-stimulated binding. A binding curve and competitor experiments suggested that the DNA binding of CuCOR15 exhibited low affinity and non-specificity. Moreover, tRNA competed with the DNA binding. Histidine-rich domains and a polylysine segment-containing domain participated in the DNA binding. These results suggest that CuCOR15 can interact with DNA, and also RNA, in the presence of Zn2+. Dehydrin may protect nucleic acids in plant cells during seed maturation and stress responses.  相似文献   

6.
Isolates with mutations in glyS, the structural gene for glycyl-transfer ribonucleic acid (tRNA) synthetase (GRS) in Escherichia coli, are frequently found among glycine auxotrophs. Extracts of glyS mutants have altered GRS activities. The mutants grow with normal growth rates in minimal media when high levels of glycine are provided. No other metabolite of a variety tested is capable of restoring normal growth. The glyS mutants fail to make ribonucleic acid (RNA) when depleted of exogenous glycine in strains which are RC(str) but do so when the cells are RC(rel). In contrast, biosynthetic mutants which are unable to synthesize glycine (glyA mutants) do not make RNA when deprived of glycine even if they are RC(rel); in this case, RNA is synthesized upon glycine deprivation only when the nucleic acid precursors made from glycine are provided in the medium. The level of serine transhydroxymethylase is unaltered in extracts of any of the glyS mutants, even though the level of charged tRNA(Gly) is at least 20-fold lower than that found in a prototrophic parent; this indicates that, if there is control over the synthesis of serine transhydroxymethylase, it is not modified by reduced levels of charging of the major species of tRNA(Gly).  相似文献   

7.
Summary Polyamines are able to affect Fe2+ autoxidation in the presence of suitable low molecular weight phosphorus-containing compounds; the inhibitory effect exerted by polyamines is directly related to their ability to bind phosphorus-containing compounds [1].It is well known that polyamines, as polycations at physiological pH, bind strongly to nucleic acids. In this paper it is shown that polyamines, also in the presence of nucleic acids, inhibit Fe2+ autoxidation and thus depress the generation of free oxygen radicals. Most of the nucleic acids tested inhibited Fe2+ autoxidation although the concentration which causes half maximal effect differs. Polyamine effect on Fe2+ autoxidation varies greatly depending on the single or double stranded nature of the nucleic acid. In the present of single stranded nucleic acids, spermine and spermidine potentiate the inhibition of Fez+ autoxidation by these nucleic acids. A relationship exists between the ability of spermine to interact with single stranded nucleic acids and to inhibit Fe2+ autoxidation in their presence. When double stranded nucleic acids are present, polyamines reverse the inhibition of Fee+ autoxidation exerted by these nucleic acids. Molecular mechanisms are proposed to explain these experimental results. The hypothesis that polyamines may inhibit oxidative damage caused to nucleic acids by Fe2+ autoxidation, is also discussed.Abbreviations poly [A] polyadenylic acid (5) - poly [C] polycytidylic acid (5) - poly [1] polyinosinic acid (5) - poly [G] polyguanylic acid (5) - poly [A. U] polyadenylic-uridylic acid - poly [A] poly [U] polyadenylic-polyuridylic acid  相似文献   

8.
The thermal unfolding of phenylalanine and initiator tRNA from yeast was investigated over a broad range of solution conditions by differential ultraviolet absorption at 260 nm. Under most conditions, the initiator tRNA exhibits two clearly separated transitions in its differential melting curve which were assigned to unfolding of tertiary and secondary structure elements, respectively. The tertiary transition of this tRNA and the overall transition observed for tRNAPhe do not show a maximum in a curve of Tm values plotted as a function of [Na+]. Such a maximum is usually observed for other nucleic acids at about 1 M Na+. In the presence of 5 mM of the divalent cation Mg2+ (or Ca2+), an overall destabilization of the tRNAs is observed when increasing the sodium concentration. The largest fall in Tm (approximately 15 degrees C) is observed for the tertiary transition of the initiator tRNA. Among various cations tested the following efficiency in the overall stabilization of tRNAPhe is observed: spermine greater than spermidine greater than putrescine greater than Na+ (approximately NH4+). Mg2+ is most efficient at concentrations above 5 mM, but below this concentration spermine and spermidine appear to be more efficient. The same hierarchy in stabilizing power of the polyamines and Na+ is observed for both transitions of the initiator tRNA. However, when compared with Mg2+, the polyamines are far less capable of stabilizing the tertiary structure. In contrast, spermine and spermidine are slightly better than Mg2+ in stabilizing the secondary structure. At increasing concentrations of the polyvalent cations (at fixed [Na+] ) the Tm values of the tRNAs attain a constant value.  相似文献   

9.
Methyl carbon-13 NMR spectra of purified tRNA species are presented for the first time. In addition, these spectra of tRNA species specific for phenylalanine, tyrosine, and cysteine exhibited the first resolution of single methyl carbon resonances. Carbon-13 enriched methyl groups of ribothymidine (T) and 7-methylguanosine (m7G) and the methylthio group of 2-methylthio-N6-(delta2-isopentenyl) adenosine (ms2i6A) were resolved. The T methyl signal of tRNAPhe shifted from 12.3 ppm at 45 degrees in the absence of added Mg2+ to 11.1 ppm at 30 degrees in the presence of 10mM MgCl2. The same change in conditions led to a 0.4 ppm shift of the m7G methyl signal in the opposite direction. The relative ease in obtainment of single carbon resonances of purified tRNA species, and display of the sensitivity of their chemical shifts to changes in local structure, are requisite criteria for 13C-NMR to be a useful technique in probing tRNA conformation and its changes during interaction with proteins and other nucleic acids.  相似文献   

10.
MANY studies have been made of the specificity of interaction between nucleic acids and polypeptides, proteins and enzymes1,2. Electrostatic forces between basic amino-acids and phosphate groups contribute to the stability of the complexes, but selective recognition requires more specific interactions which are not yet understood. The recognition of a specific region of a nucleic acid could be explained if this region has some particular conformation or if there are specific interactions between a few amino-acid residues and the bases of this region. We wish to report results which show that the aromatic amino-acids tryptophan and tyrosine can interact with nucleic acid bases in double stranded nucleic acids. They suggest that aromatic amino-acid residues of enzymes and proteins could participate in the binding to nucleic acids by intercalating between the bases and thus constraining the nucleic acid molecule to adopt a definite position with respect to the protein molecule.  相似文献   

11.
Eilatin-containing ruthenium complexes bind to a broad range of different nucleic acids including: calf thymus (CT) DNA, tRNA(Phe), polymeric RNAs and DNAs, and viral RNAs including the HIV-1 RRE and TAR. The nucleic acid specificity of Lambda- and Delta-[Ru(bpy)2eilatin]2+ have been compared to that of the 'free' eilatin ligand, and to the classic intercalating agent ethidium bromide. Interestingly, all four compounds appear to bind to nucleic acids by intercalation, but the trends in nucleic acid binding specificity are highly diverse. Unlike ethidium bromide, both eilatin and the eilatin-containing coordination complexes bind to certain single-stranded RNAs with high affinity (K(d) < or = 1 microM). Eilatin itself is selective for electron-poor polymeric purines, while the eilatin-coordination complexes exhibit preference for the polypyrimidine r(U). These results show how the binding specificity of an intercalating ligand can change upon its incorporation into an octahedral metal complex.  相似文献   

12.
The interaction of calf-thymus DNA with Cu(II) and Pb(II) ions has been investigated in H2O and D2O solutions at physiological pH, using laser Raman spectroscopy. The results confirm the destabilizing effect of Cu2+ ions, which are shown to bind strongly to the guanine and cytidine bases, perturbing the A-T base pairs and disrupting the double-helical structure of DNA, whose conformation is markedly altered by these interactions. Earlier claims that Pb2+ ions destabilize DNA are not supported by the present study. These ions are found to interact only weakly with the nucleic bases, binding to the N7 position of the guanine bases and also interacting with the A-T pairs. Both types of ions are found to interact with the charged phosphate groups of DNA, although these sites are preferred over the nucleic bases by Pb2+ ions.  相似文献   

13.
Reviewed and discussed are the recent data demonstrating profound functional similarity between class-1 translation termination factors (RF1 and RF2 in prokaryotes, aRF1 and eRF1 in Archaea and eukaryotes, respectively) and aminoacyl-tRNA as regards their roles in the course of translation on the ribosome. Functional analogy of these two components of the cell protein-synthesizing machinery was suggested long ago; however, numerous experimental proofs have been obtained only recently. This similarity implies that decoding of the genetic information by the ribosomal machine is performed similarly at all stages of translation, though tRNA plays the main role at initiation and elongation, while the protein is most important for termination. Earlier it was found that nucleic acids (ribozymes) can operate like the protein enzymes, and now we have got evidence for the reverse: a protein (translation termination factor) can act like a nucleic acid (tRNA). Thus one can speak of "exchange" of molecular functions between proteins and nucleic acids. Therefore, the profound chemical difference between proteins and nucleic acids is not an insuperable barrier to their mutual functional replacement in certain situations.  相似文献   

14.
The nucleic acids of Escherichia coli cells were uniformly labelled with 32P by growing the cells in [32P]orthophosphoric acid for about four generations. The cells were harvested in the logarithmic phase, resuspended in a buffer containing 6 mM Mg2+, 150 mM NH4+ and polyamines and incubated for 3 min at 37 degrees C in the presence of 3H-labelled amino acids. This procedure preferentially labels growing peptidyl chains. Polysomes were isolated, the fraction in the post-translocational state was assessed by a puromycin reaction and the tRNA content/70S ribosome was quantified in comparison to the amount of 5S rRNA determined after separation by gel electrophoresis. The data revealed that at least 75% of post-translocational ribosomes in isolated native polysomes carry a tRNA in their E site. The results are consistent with the allosteric three-site model for the elongation cycle but disagree with the two-site model.  相似文献   

15.
We have investigated the regulation of the activity and synthesis of the glutamine synthetase (l-glutamate:ammonia ligase (ADP-forming), EC (6.3.1.2) of Azotobacter vinelandii. Synthesis of the enzyme was not repressed by NH+4 and/or a number of amino acids in the growth medium; however, biosynthetic activity was rapidly lost through adenylylation in response to ammonium ion. The enzyme could be prepared as a 'relaxed, divalent-cation-free form which was catalytically inactive. The 'taut', active form could be restored with 1-5 mM Mg2+, Mn2+, Ca2+ or CO2+ and taut-vs.-relaxed difference spectra unique to each divalent cation were generated. Mg2+ and CO2+ each supported biosynthetic catalysis, but with different substrate Km and Vmax values. L-Alanine, glycine and L-aspartate were the most potent of several inhibitors of the biosynthetic and the gamma-glutamyl transferase activities; only aspartate and AMP behaved differentially toward glutamine synthetase adenylylation state: the more highly adenylylated enzyme was more severely affected. Any two of alanine, glycine or AMP showed cumulative inhibition, while the inhibitory effects of groups of three effectors were not cumulative. The Co2+-supported biosynthetic activity of Al vinelandii glutamine synthetase was markedly less sensitive to inhibition my glycine and alanine and was stimulated up to 50% by 1-10 mM aspartate.  相似文献   

16.
B. King  J. M. Chapman 《Planta》1973,114(3):227-238
Summary The relationship between the synthesis and methylation of nucleic acids in tissue slices from higher plant storage organs has been investigated. Although the observed nucleic acid synthesis is mainly an expression of rRNA synthesis the highest level of methylation occurs in tRNA. Unlike the synthesis and methylation of rRNA which appears completely coupled, the methylation of tRNA is not tightly coupled to its synthesis. It is suggested that a pool of undermethylated tRNA exists in the tissue prior to incubation and that methylation of this tRNA initially controls the rate of protein synthesis in the tissue slices.  相似文献   

17.
The interaction of DNA with divalent metal ions: Ba2+, Mg2+, Mn2+, Ni2+, Cu2+ in solutions at different ionic strengths mu was investigated. The combination of following methods: flow birefringence, viscometry, UV-spectroscopy and circular dichroism made possible to follow the state of the secondary and tertiary structure of the DNA molecule during its interaction with ions. The presence of divalent ions in solution affects the hydrodynamic properties of DNA only at low mu. At high mu the difference in the action of mono- and divalent ions disappears. The persistence length of DNA does not change during the experiment. It is shown that the Mg2+ and Ba2+ ions interact only with phosphate groups of DNA but Mn2+, Ni2+, Cu2+ ions interact also with the nitrogen bases of the macromolecule.  相似文献   

18.
During the isolation of the activator protein for glucosylceramide beta-glucosidase, we found that certain column fractions contained an inhibitor of the enzyme. After separation from the activator protein by a DEAE-Sephacel column, the inhibitor was purified further with a Spehadex G-75 column. The u.v. absorption spectrum of the purified material was similar to that of nucleic acids and the protein content of the purified material was negligible. Furthermore the purified inhibitor reacted with orcinol but not with diphenylamine, and its inhibitory activity was completely destroyed by treatment with RNAases. It seems likely that the purified inhibitor was tRNA. Authentic RNA, tRNA and DNA had similar inhibitory effects on beta-glucosidase (Ki 17 micrograms/ml for tRNA, noncompetitive toward the substrate). The inhibitory effect of nucleic acids was not fully overcome by an excess amount of the activator protein, but phosphatidylserine could restore the activity to normal. Tests with several other hydrolases revealed that the inhibitory effect of nucleic acids was fairly general.  相似文献   

19.
Water-soluble polyethyleneimine (PE) derivatives containing nucleic acid bases and hydrophilic amino acids such as homoserine (Hse) and serine were prepared by the activated ester method as nucleic acid models. From spectroscopic measurements, the polymers were found to interact with DNA accompanied by an induction of conformational change. Hypochromicity in UV spectra indicated that a stable polymer complex was formed between poly (A) with PEI-Hse-Ura by complementary hydrogen bonding with equimolar nucleic base units (adenine∶uracil=1∶1). The induced conformation of DNA by the interaction with the polymer containing uracil and homoserine (PEI-Hse-Ura) was concluded to be a super triple helical structure. The formation of the polymer complex, DNA:PEI-Hse-Ura, was found to be affected by the presence of metal ions such as Ca2+ and Cu2+.  相似文献   

20.
Amino acids produced from formaldehyde and hydroxylamine in modified sea mediums with different concentrations of molybdate were analyzed. The modified sea mediums contained lower concentration of sodium chloride and higher concentrations of transition metal ions (Zn2+, Fe3+, Cu2+, Co2+, Mn2+ each 10(-4)m, and Mo O4(2-)10(-6), 10(-4), or 10(-2)m) than sea water. The concentration of molybdate had apparently no remarkable effect on the total yields of primary amino groups, but a remarkable effect on the nature of amino acids produced. The formation of alanine, aspartic acid, beta-alanine and, in particular, proline was increased, and that of glycine and serine was decreased with the enrichment of molybdate. The results suggest the possibility of a natural selection of prebiotic organic molecules based on the nature of environmental catalysers in the course of chemical evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号