首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asian Vigna group of grain legumes consists of six domesticated species, among them black gram is widely grown in South Asia and to a lesser extent in Southeast Asia. We report the first genetic linkage map of black gram [Vigna mungo (L.) Hepper], constructed using a BC1F1 population consisting of 180 individuals. The BC1F1 population was analyzed in 61 SSR primer pairs, 56 RFLP probes, 27 AFLP loci and 1 morphological marker. About 148 marker loci could be assigned to the 11 linkage groups, which correspond to the haploid chromosome number of black gram. The linkage groups cover a total of 783 cM of the black gram genome. The number of markers per linkage group ranges from 6 to 23. The average distance between adjacent markers varied from 3.5 to 9.3 cM. The results of comparative genome mapping between black gram and azuki bean show that the linkage order of markers is highly conserved. However, inversions, insertions, deletions/duplications and a translocation were detected between the black gram and azuki bean linkage maps. The marker order on parts of linkage groups 1, 2 and 5 is reversed between the two species. One region on black gram linkage group 10 appears to correspond to part of azuki bean linkage group 1. The present study suggests that the azuki bean SSR markers can be widely used for Asian Vigna species and the black gram genetic linkage map will assist in improvement of this crop.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.The first three authors contributed equally to this research  相似文献   

2.
Eggplant (Solanum melongena L.), also known as aubergine or brinjal, is an important vegetable in many countries. Few useful molecular markers have been reported for eggplant. We constructed simple sequence repeat (SSR)-enriched genomic libraries in order to develop SSR markers, and sequenced more than 14,000 clones. From these sequences, we designed 2,265 primer pairs to flank SSR motifs. We identified 1,054 SSR markers from amplification of 1,399 randomly selected primer pairs. The markers have an average polymorphic information content of 0.27 among eight lines of S. melongena. Of the 1,054 SSR markers, 214 segregated in an intraspecific mapping population. We constructed cDNA libraries from several eggplant tissues and obtained 6,144 expressed sequence tag (EST) sequences. From these sequences, we designed 209 primer pairs, 7 of which segregated in the mapping population. On the basis of the segregation data, we constructed a linkage map, and mapped the 236 segregating markers to 14 linkage groups. The linkage map spans a total length of 959.1 cM, with an average marker distance of 4.3 cM. The markers should be a useful resource for qualitative and quantitative trait mapping and for marker-assisted selection in eggplant breeding.  相似文献   

3.
To construct a high-density molecular linkage map of Italian ryegrass (Lolium multiflorum Lam), we used a two-way pseudo-testcross F1 population consisting of 82 individuals to analyze three types of markers: restriction fragment length polymorphism markers, which we detected by using genomic probes from Italian ryegrass as well as heterologous anchor probes from other species belonging to the Poaceae family, amplified fragment length polymorphism markers, which we detected by using PstI/MseI primer combinations, and telomeric repeat associated sequence markers. Of the restriction fragment length polymorphism probes that we generated from a PstI genomic library, 74% (239 of 323) of randomly selected probes detected hybridization patterns consistent with single-copy or low-copy genetic locus status in the screening. The 385 (mostly restriction fragment length polymorphism) markers that we selected from the 1226 original markers were grouped into seven linkage groups. The maps cover 1244.4 cM, with an average of 3.7 cM between markers. This information will prove useful for gene targeting, quantitative trait loci mapping, and marker-assisted selection in Italian ryegrass.  相似文献   

4.
Recent enhancement of the pool of known molecular markers for avocado has allowed the construction of the first moderately dense genetic map for this species. Over 300 SSR markers have been characterized and 163 of these were used to construct a map from the reciprocal cross of two Florida cultivars 'Simmonds' and 'Tonnage'. One hundred thirty-five primer pairs amplified 163 usable loci with 20 primer pairs amplifying more than one locus. 'Tonnage' was heterozygous for 152 (93%) loci, whereas 'Simmonds' was heterozygous for 64 (39%). Null alleles were identified at several loci. Linkage maps were produced for both reciprocal crosses and combined to generate a composite linkage map for the F1 population of 715 individuals. The composite map contains 12 linkage groups. Linkage groups ranged in size from 157.3 cM (LG2) to 2.4 cM (LG12) and the number of loci mapped per group ranged from 29 (LG1) to two (LG12). The total map length was 1,087.4 cM. Only seven markers were observed to have segregation distortion (α ≤ 0.05) across both sub-composite (reciprocal) maps. Phenotypic data from traits of horticultural interest are currently being collected on this population with the ultimate goal of identifying useful quantitative trait loci and the development of a marker-assisted selection program.  相似文献   

5.
To map the QTLsof Fusarium moniliforme ear rot resistance inZea mays L., a total of 230 F2 individuals, derived from a single cross between inbred maize lines R15 (resistant) and Ye478 (susceptible), were genotyped for genetic map construction using simple sequence repeat (SSR) markers and amplified fragment length polymorphism (AFLP) markers. We used 778 pairs of SSR primers and 63 combinations of AFLP primers to detect the polymorphisms between parents, R15 and Ye478. From the polymorphic 30 AFLP primer combinations and 159 SSR primers, we scored 260 loci in the F2 population, among which 8 SSR and 13 AFLP loci could not be assigned to any of the linkage groups. An integrated molecular genetic linkage map was constructed by the remaining 151 SSR and 88 AFLP markers, which distributed throughout the 10 linkage groups of maize and spanned the genome of about 3463.5 cM with an average of 14.5 cM between two markers. On 4 chromosomes, we detected 5 putative segregation distortion regions (SDRs), including 2 new ones (SDR2 and SDR7). The other 3 SDRs were located near the regions where gametophyte genes were mapped, indicating that segregation distortion could be partially caused by gametophytic factors.  相似文献   

6.
To develop simple sequence repeat (SSR) markers for the hexaploid forage grass timothy (Phleum pratense L.), we used four SSR-enriched genomic libraries to isolate 1,331 SSR-containing clones. All four libraries contained a high percentage of perfect clones, ranging from 78.1% to 91.6%. From these clones, we developed 355 SSR markers when tested from 502 SSR primer pairs. Using all 355 SSR markers we tested one screening panel consisting of eight timothy clones to detect the level of polymorphism and identify a set of loci suitable for framework mapping. The SSR markers detected 90.4% polymorphism between the parents of a pseudo-testcross F1 population. These SSR markers will provide an ideal marker system to assist with gene targeting, QTL (quantitative trait locus) mapping, and marker-assisted selection in timothy.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

7.
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl 13 . The F2 individuals and F3 families of the cross HA-R5 (resistant) × HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F2 individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl 13 gene. Genotyping the F2 population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15–22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl 13 gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl 13 gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.  相似文献   

8.
Cassava (Manihot esculenta) is an economically important crop that is grown in tropical and sub-tropical regions. Use of molecular technology for genetic improvement of cassava has been limited by the lack of a large set of DNA markers and a genetic map. Therefore, the aims here were to develop additional simple sequence repeat (SSR) markers from the public expressed sequence tags (ESTs), and to construct a genetic linkage map. In this study, we designed 425 EST-SSR markers from sequences obtained from the cassava EST database in GenBank, and integrated them with 667 SSR markers from a microsatellite-enriched genomic sequence received from the International Center for Tropical Agriculture (CIAT). Of these, 107 EST-SSR and 500 genomic SSR primer pairs showed polymorphic patterns when screened in two cassava varieties, Hauy Bong 60 and Hanatee, which were used as female and male parental lines, respectively. Within the 107 and 500 primer pairs, 81 and 226 EST-SSR and SSR primer pairs were successfully genotyped with 100 samples of F1 progeny, respectively. The results showed 20 linkage groups consisting of 211 markers—56 EST-SSR and 155 SSR markers—spanning 1,178 cM, with an average distance between markers of 5.6 cM and about 11 markers per linkage group. These novel EST-SSR markers provided genic PCR-based co-dominant markers that were useful, reliable and economical. The EST-SSRs were used together with SSR markers to construct the cassava genetic linkage map which will be useful for the identification of quantitative trait loci controlling the traits of interest in cassava breeding programs.  相似文献   

9.
A genetic map constructed from a population segregating for a trait of interest is required for QTL identification. The goal of this study was to construct a molecular map of tetraploid alfalfa (Medicago sativa.) using simple sequence repeat (SSR) markers derived primarily from expressed sequence tags (ESTs) and bacterial artificial chromosome (BAC) inserts of M. truncatula. This map will be used for the identification of drought tolerance QTL in alfalfa. Two first generation backcross populations were constructed from a cross between a water-use efficient, M. sativa subsp. falcata genotype and a low water-use efficient M. sativa subsp. sativa genotype. The two parents and their F1 were screened with 1680 primer pairs designed to amplify SSRs, and 605 single dose alleles (SDAs) were amplified. In the F1, 351 SDAs from 256 loci were mapped to 41 linkage groups. SDAs not inherited by the F1, but transmitted through the recurrent parents and segregating in the backcross populations, were mapped to 43 linkage groups, and 44 of these loci were incorporated into the composite maps. Homologous linkage groups were joined to form eight composite linkage groups representing the eight chromosomes of M. sativa. The composite maps consist of eight composite linkage groups with 243 SDAs from M. truncatula EST sequences, 38 SDAs from M. truncatula BAC clone sequences, and five SDAs from alfalfa genomic SSRs. The total composite map length is 624 cM, with average marker density per composite linkage group ranging from 1.5 to 4.4 cM, and an overall average density of 2.2 cM. Segregation distortion was 10%, and distorted loci tended to cluster on individual homologues of several linkage groups. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Molecular markers and molecular genetic maps are prerequisites for molecular breeding in any plant species. A comprehensive genetic linkage map for cultivated Porphyra haitanensis T. J. Chang et B. F. Zheng has not yet been developed. In this study, 157 double haploid (DH) lines [derived from a YSIII (wildtype) × RTPM (red‐type artificial pigmentation mutant) cross] were used as a mapping population in P. haitanensis. A total of 60 pairs of sequence‐related amplified polymorphism (SRAP) primers and 39 pairs of simple sequence repeat (SSR) primers were used to detect polymorphisms between the two parents. Fifteen SRAP and 16 SSR polymorphic primer pairs were selected to analyze the DH population. A linkage genetic map comprising 67 SRAP markers and 20 SSR markers in five linkage groups, with a total length of 830.6 cM and an average of 10.13 cM between markers, was constructed. The markers were distributed evenly in all linkage groups without clustering. The linkage groups comprised 12–23 markers ranging in length from 134.2 to 197.3 cM. The estimated genome length of P. haitanensis was 942.4 cM, with 88.1% coverage. This is the first report of a comprehensive genetic map in P. haitanensis. The map presented here will provide a basis for the development of high‐density genetic linkage maps and lay the foundation for molecular breeding work in P. haitanensis.  相似文献   

11.
The aim of the present work was to develop a microsatellite marker-based map of the Vitis vinifera genome (n=19), useful for genetic studies in this perennial heterozygous species, as SSR markers are highly transferable co-dominant markers. A total of 346 primer pairs were tested on the two parents (Syrah and Grenache) of a full sib population of 96 individuals (S × G population), successfully amplifying 310 markers. Of these, 88.4% markers were heterozygous for at least one of the two parents. A total of 292 primer pairs were then tested on Riesling, the parent of the RS1 population derived from selfing (96 individuals), successfully amplifying 299 markers among which 207 (62.9%) were heterozygous. Only 6.7% of the markers were homozygous in all three genotypes, stressing the interest of such markers in grape genetics. Four maps were constructed based on the segregation of 245 SSR markers in the two populations. The Syrah map was constructed from the segregations of 177 markers that could be ordered into 19 linkage groups (total length 1,172.2 cM). The Grenache map was constructed with the segregations of 178 markers that could be ordered into 18 linkage groups (total length 1,360.6 cM). The consensus S × G map was constructed with the segregations of 220 markers that were ordered into 19 linkage groups (total length 1,406.1 cM). One hundred and eleven markers were scored on the RS1 population, among them 27 that were not mapped using the S × G map. Out of these 111 markers, 110 allowed to us to construct a map of a total length of 1,191.7 cM. Using these four maps, the genome length of V. vinifera was estimated to be around 2,200 cM. The present work allowed us to map 123 new SSR markers on the V. vinifera genome that had not been ordered in a previous SSR-based map (Riaz et al. 2004), representing an average of 6.5 new markers per linkage group. Any new SSR marker mapped is of great potential usefulness for many applications such as the transfer of well-scattered markers to other maps for QTL detection, the use of markers in specific regions for the fine mapping of genes/QTL, or for the choice of markers for MAS.  相似文献   

12.
We constructed a Brassica napus genetic map with 240 simple sequence repeats (SSR) primer pairs from private and public origins. SSR, or microsatellites, are highly polymorphic and efficient markers for the analysis of plant genomes. Our selection of primer pairs corresponded to 305 genetic loci that we were able to map. In addition, we also used 52 sequence-characterized amplified region primer pairs corresponding to 58 loci that were developed in our lab. Genotyping was performed on six F2 populations, corresponding to a total of 574 F2 individual plants, obtained according to an unbalanced diallel cross design involving six parental lines. The resulting consensus map presented 19 linkage groups ranging from 46.2 to 276.5 cM, which we were able to name after the B. napus map available at , thus enabling the identification of the A genome linkage groups originating from the B. rapa ancestor and the C genome linkage groups originating from the B. oleracea ancestor in the amphidiploid genome of B. napus. Some homoeologous regions were identified between the A and the C genomes. This map could be used to identify more markers, which would eventually be linked to genes controlling important agronomic characters in rapeseed. Furthermore, considering the good genome coverage we obtained, together with an observed homogenous distribution of the loci across the genome, this map is a powerful tool to be used in marker-assisted breeding. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
Allotetraploid white clover (Trifolium repens L.), a cool-season perennial legume used extensively as forage for livestock, is an important target for marker-assisted breeding. A genetic linkage map of white clover was constructed using simple sequence repeat (SSR) markers based on sequences from several Trifolieae species, including white clover, red clover (T. pratense L.), Medicago truncatula (Gaertn.) and soybean (Glycine max L.). An F1 population consisting of 179 individuals, from a cross between two highly heterozygous genotypes, GA43 and Southern Regional Virus Resistant, was used for genetic mapping. A total of 1,571 SSR markers were screened for amplification and polymorphism using DNA from two parents and 14 F1s of the mapping population. The map consists of 415 loci amplified from 343 SSR primer pairs, including 83 from white clover, 181 from red clover, 77 from M. truncatula, and two from soybean. Linkage groups for all eight homoeologous chromosome pairs of allotetraploid white clover were detected. Map length was estimated at 1,877 cM with 87% genome coverage. Map density was approximately 5 cM per locus. Segregation distortion was detected in six segments of the genome (homoeologous groups A1, A2, B1, B2, C1, and D1). A comparison of map locations of markers originating from white clover, red clover, and alfalfa (M. sativa L.) revealed putative macro-colinearity between the three Trifolieae species. This map can be used to link quantitative trait loci with SSR markers, and accelerate the improvement of white clover by marker-assisted selection and breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Southern corn rust (SCR), Puccinia polysora Underw, is a destructive disease in maize (Zea mays L.). Inbred line Qi319 is highly resistant to SCR. Results from the inoculation test and genetic analysis of SCR in five F2 populations and five BC1F1 populations derived from resistant parent Qi319 clearly indicate that the resistance to SCR in Qi319 is controlled by a single dominant resistant gene, which was named RppQ. Simple sequence repeat (SSR) analysis was carried out in an F2 population derived from the cross Qi319×340. Twenty SSR primer pairs evenly distributed on chromosome10 were screened at first. Out of them, two primer pairs, phi118 and phi 041, showed linkage with SCR resistance. Based on this result, eight new SSR primer pairs surrounding the region of primers phi118 and phi 041 were selected and further tested regarding their linkage relation with RppQ. Results indicated that SSR markers umc1,318 and umc 2,018 were linked to RppQ with a genetic distance of 4.76 and 14.59 cM, respectively. On the other side of RppQ, beyond SSR markers phi 041 and phi118, another SSR marker umc1,293 was linked to RppQ with a genetic distance of 3.78 cM. Because the five linkage SSR markers (phi118, phi 041, umc1,318, umc 2,018 and umc1,293) are all located on chromosome 10, the RppQ gene should also be located on chromosome 10. In order to fine map the RppQ gene, AFLP (amplified fragment length polymorphism) analysis was carried out. A total 54 AFLP primer combinations were analyzed; one AFLP marker, AF1, from the amplification products of primer combination E-AGC/M-CAA, showed linkage with the RppQ gene in a genetic distance of 3.34 cM. Finally the RppQ gene was mapped on the short arm of chromosome 10 between SSR markers phi 041 and AFLP marker AF1 with a genetic distance of 2.45 and 3.34 cM respectively.Communicated by H. F. Linskens  相似文献   

15.
AFLP markers have been successfully employed for the development of a high-density linkage map of ryegrass (Lolium perenne L.) using a progeny set of 95 plants from a testcross involving a doubled-haploid tester. This genetic map covered 930 cM in seven linkage groups and was based on 463 amplified fragment length polymorphism (AFLP) markers using 17 primer pairs, three isozymes and five EST markers. The average density of markers was approximately 1 per 2.0 cM. However, strong clustering of AFLP markers was observed at putative centromeric regions. Around these regions, 272 markers covered about 137 cM whereas the remaining 199 markers covered approximately 793 cM. Most genetic distances between consecutive pairs of markers were smaller than 20 cM except for five gaps on groups A, C, D, F and G. A skeletal map with a uniform distribution of markers can be extracted from this high-density map, and can be applied to detect and map QTLs. We report here the application of AFLP markers to genome mapping, in Lolium as a prelude to quantitative trait locus (QTL) identification for diverse agronomic traits in ryegrass and for marker-assisted plant breeding. Received: 4 November 1998 / Accepted:15 March 1999  相似文献   

16.
A simple sequence repeat (SSR)-based linkage map has been constructed for perennial ryegrass (Lolium perenne L.) using a one-way pseudo-testcross reference population. A total of 309 unique perennial ryegrass SSR (LPSSR) primer pairs showing efficient amplification were evaluated for genetic polymorphism, with 31% detecting segregating alleles. Ninety-three loci have been assigned to positions on seven linkage groups. The majority of the mapped loci are derived from cloned sequences containing (CA)n-type dinucleotide SSR arrays. A small number (7%) of primer pairs amplified fragments that mapped to more than one locus. The SSR locus data has been integrated with selected data for RFLP, AFLP and other loci mapped in the same population to produce a composite map containing 258 loci. The SSR loci cover 54% of the genetic map and show significant clustering around putative centromeric regions. BLASTN and BLASTX analysis of the sequences flanking mapped SSRs indicated that a majority (84%) are derived from non-genic sequences, with a small proportion corresponding to either known repetitive DNA sequence families or predicted genes. The mapped LPSSR loci provide the basis for linkage group assignment across multiple mapping populations.  相似文献   

17.
An SSR-based linkage map of Capsicum annuum   总被引:1,自引:0,他引:1  
There are five cultivated species of pepper, of which Capsicum annuum is the most widely cultivated as a vegetable or spice and the main experimental material of most pepper breeding programs. However, the number of simple sequence-repeat (SSR) markers known for C. annuum is limited. To develop SSR markers for Capsicum species, we constructed four SSR-enriched libraries from the genomic DNA of C.␣annuum, sequenced 1873 clones, and isolated 626 unique SSR clones. A higher percentage of these SSR markers were taken from dinucleotide motif libraries than from trinucleotide motif libraries. Primer pairs for the 626 SSR clones were synthesized and tested for polymorphisms; 594 amplified products were detected with the expected size. However, only 153 products were polymorphic between the parents of our mapping population. Using 106 highly reproducible pairs from the primer pairs, we constructed a linkage map of C. annuum in an intraspecific doubled haploid population (n=117) that contains nine previously reported SSRs as well as AFLP, CAPS, and RAPD markers and the trait of fruit pungency. The map contains 374 markers, including 106 new SSR markers distributed across all 13 linkage groups, and covers 1042 cM. The polymorphism information content (PIC) of these new SSR markers was calculated using 14 lines of Capsicum species. The average number of alleles per locus was 2.9 and the average PIC value was 0.46, even within C. annuum. The SSR markers developed in this study will be useful for mapping and marker-assisted selection in pepper breeding, and the linkage map provides a reference genetic map for Capsicum species.  相似文献   

18.
A collection of 94 F6 individuals derived from crosses between Lotus japonicus, Gifu B-129 (G) and Miyakojima MG-20 (M) were used for mapping. By using the HEGS running system, 427 EcoRI/MseI primer pairs were selected to generate a total of 2053 markers, consisting of 739 G-associated dominant markers, 674 M-associated dominant markers, 640 co-dominant markers, 95 SSR markers and 2 dCAPS markers. Excluding heavily distorted markers, 1588 were mapped to six chromosomes of the L. japonicus genome based on the 97 reference markers. This linkage map consisted of 1023 unique markers (excluding duplicated markers) and covered a total of 508.5 cM of the genome with an average chromosome length of 84.7 cM and interval distance of 0.50 cM. Fifteen quantitative traits loci for eight morphological traits were also mapped. This linkage map will provide a useful framework for physical map construction in L. japonicus in the near future.Key words: Lotus japonicus, AFLP, SSR, linkage map, HEGS (high efficiency genome scanning)  相似文献   

19.
We have constructed a molecular linkage map of pepper (Capsicum spp.) in an interspecific F2 population of 107 plants with 150 RFLP and 430 AFLP markers. The resulting linkage map consists of 11 large (206–60.3 cM) and 5 small (32.6–10.3 cM) linkage groups covering 1,320 cM with an average map distance between framework markers of 7.5 cM. Most (80%) of the RFLP markers were pepper-derived clones, and these markers were evenly distributed across the genome. By using 30 primer combinations, we were able to generate 444 AFLP markers in the F2 population. The majority of the AFLP markers clustered in each linkage group, although PstI/MseI markers were more evenly distributed than EcoRI/MseI markers within the linkage groups. Genes for the biosynthesis of carotenoids and capsaicinoids were mapped on our linkage map. This map will provide the basis of studying secondary metabolites in pepper. Received: 20 October 1999 / Accepted: 3 July 2000  相似文献   

20.
Using SRAP (sequence-related amplified polymorphism) markers a genetic linkage map of cucumber was constructed with a population consisting of 138 F2 individuals derived from a cross of the two cucumber lines, S06 and S52. In the survey of parental polymorphisms with 182 primer combinations, 64 polymorphism-revealing primer pairs were screened out, which generated totally 108 polymorphic bands with an average of 1.7 bands per primer pair and at most 6 bands from one primer pair. The constructed molecular linkage map included 92 loci, distributed in seven linkage groups and spanning 1164.2 cM in length with an average genetic distance of 12.6 cM between two neighboring loci. Based on this linkage map, the quantitative trait loci (QTL) for the lateral branch number (lbn) and the lateral branch average length (lbl) in cucumber were identified by QTLMapper1.6. A major QTL lbn1 located between ME11SA4B and ME5EM5 in LG2 could explain 10.63% of the total variation with its positively effecting allele from S06. A major QTL lbl1 located between DC1OD3 and DC1EM14 in LG2 could account for 10.38% of the total variation with its positively effecting allele from S06.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号