首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in TREX1 have been linked to a spectrum of human autoimmune diseases including Aicardi-Goutières syndrome (AGS), familial chilblain lupus (FCL), systemic lupus erythematosus, and retinal vasculopathy and cerebral leukodystrophy. A common feature in these conditions is the frequent detection of antibodies to double-stranded DNA (dsDNA). TREX1 participates in a cell death process implicating this major 3' --> 5' exonuclease in genomic DNA degradation to minimize potential immune activation by persistent self DNA. The TREX1 D200N and D18N dominant heterozygous mutations were identified in AGS and FCL, respectively. TREX1 enzymes containing the D200N and D18N mutations were compared using nicked dsDNA and single-stranded DNA (ssDNA) degradation assays. The TREX1WT/D200N and TREX1WT/D18N heterodimers are completely deficient at degrading dsDNA and degrade ssDNA at an expected approximately 2-fold lower rate than TREX1WT enzyme. Further, the D200N- and D18N-containing TREX1 homo- and heterodimers inhibit the dsDNA degradation activity of TREX1WT enzyme, providing a likely explanation for the dominant phenotype of these TREX1 mutant alleles in AGS and FCL. By comparison, the TREX1 R114H homozygous mutation causes AGS and is found as a heterozygous mutation in systemic lupus erythematosus. The TREX1R114H/R114H homodimer has dysfunctional dsDNA and ssDNA degradation activities and does not detectibly inhibit the TREX1WT enzyme, whereas the TREX1WT/R114H heterodimer has a functional dsDNA degradation activity, supporting the recessive genetics of TREX1 R114H in AGS. The dysfunctional dsDNA degradation activities of these disease-related TREX1 mutants could account for persistent dsDNA from dying cells leading to an aberrant immune response in these clinically related disorders.  相似文献   

2.
Human cases of infection due to a novel swine-origin variant of influenza A virus subtype H3N2 (H3N2v) have recently been identified in the United States. Pre-existing humoral and cellular immunity has been recognized as one of the key factors in limiting the infection burden of an emerging influenza virus strain, contributing to restrict its circulation and to mitigate clinical presentation. Aim of this study was to assess humoral and cell-mediated cross immune responses to H3N2v in immuno-competent (healthy donors, n = 45) and immuno-compromised hosts (HIV-infected subjects, n = 46) never exposed to H3N2v influenza strain. Humoral response against i) H3N2v (A/H3N2/Ind/08/11), ii) animal vaccine H3N2 strain (A/H3N2/Min/11/10), and iii) pandemic H1N1 virus (A/H1N1/Cal/07/09) was analysed by hemagglutination inhibition assay; cell-mediated response against the same influenza strains was analysed by ELISpot assay. A large proportion of healthy and HIV subjects displayed cross-reacting humoral and cellular immune responses against two H3N2v strains, suggesting the presence of B- and T-cell clones able to recognize epitopes from emerging viral strains in both groups. Specifically, humoral response was lower in HIV subjects than in HD, and a specific age-related pattern of antibody response against different influenza strains was observed both in HD and in HIV. Cellular immune response was similar between HD and HIV groups and no relationship with age was reported. Finally, no correlation between humoral and cellular immune response was observed. Overall, a high prevalence of HD and HIV patients showing cross reactive immunity against two H3N2v strains was observed, with a slightly lower proportion in HIV persons. Other studies focused on HIV subjects at different stages of diseases are needed in order to define how cross immunity can be affected by advanced immunosuppression.  相似文献   

3.
The response to the 2009 A(H1N1) influenza pandemic has highlighted the need for additional strategies for intervention which preclude the prior availability of the influenza strain. Here, 18 single domain VHH antibodies against the 2009 A(H1N1) hemagglutinin (HA) have been isolated from a immune alpaca phage displayed library. These antibodies have been grouped as having either (i) non-neutralising, (ii) H1N1 restricted neutralising or (iii) broad cross-subtype neutralising activity. The ability to neutralise different viral subtypes, including highly pathogenic avian influenza (H5N1), correlated with the absence of hemagglutination inhibition activity, loss of binding to HA at acid pH and the absence of binding to the head domain containing the receptor binding site. This data supports their binding to epitopes in the HA stem region and a mechanism of action other than blocking viral attachment to cell surface receptors. After conversion of cross-neutralising antibodies R1a-B6 and R1a-A5 into a bivalent format, no significant enhancement in neutralisation activity was seen against A(H1N1) and A(H5N1) viruses. However, bivalent R1a-B6 showed an 18 fold enhancement in potency against A(H9N2) virus and, surprisingly, gained the ability to neutralise an A(H2N2) virus. This demonstrates that cross-neutralising antibodies, which make lower affinity interactions with the membrane proximal stem region of more divergent HA sub-types, can be optimised by bivalency so increasing their breadth of anti-viral activity. The broad neutralising activity and favourable characteristics, such as high stability, simple engineering into bivalent molecules and low cost production make these single domain antibodies attractive candidates for diagnostics and immunotherapy of pandemic influenza.  相似文献   

4.
dsDNA of the influenza virus subtype A/Leningrad/385/80/R (H3N2)-recombinant A/Leningrad/385/80 (H3N2) and RR/8/34 (H1N1) has been synthesized using polyadenylated viral RNA as a template. This dsDNA has been cloned on plasmid pUC19. A clone has been selected harbouring the plasmid with included proximal fragment of hemagglutinin gene that contains the main antigenic determinants. The hybrid plasmid is hybridizable with RNA of the hemagglutinin gene and with oligonucleotide CATGCAAAACCTTCCC that is complementing the sequence coding for the proximal fragment of the mature hemagglutinin.  相似文献   

5.
An epidemic of an avian-origin H7N9 influenza virus has recently emerged in China, infecting 134 patients of which 45 have died. This is the first time that an influenza virus harboring an N9 serotype neuraminidase (NA) has been known to infect humans. H7N9 viruses are divergent and at least two distinct NAs and hemagglutinins (HAs) have been found, respectively, from clinical isolates. The prototypes of these viruses are A/Anhui/1/2013 and A/Shanghai/1/2013. NAs from these two viruses are distinct as the A/Shanghai/1/2013 NA has an R294K substitution that can confer NA inhibitor oseltamivir resistance. Oseltamivir is by far the most commonly used anti-influenza drug due to its potency and high bioavailability. In this study, we show that an R294K substitution results in multidrug resistance with extreme oseltamivir resistance (over 100 000-fold) using protein- and virus-based assays. To determine the molecular basis for the inhibitor resistance, we solved high-resolution crystal structures of NAs from A/Anhui/1/2013 N9 (R294-containing) and A/Shanghai/1/2013 N9 (K294-containing). R294K substitution results in an unfavorable E276 conformation for oseltamivir binding, and consequently loss of inhibitor carboxylate interactions, which compromises the binding of all classical NA ligands/inhibitors. Moreover, we found that R294K substitution results in reduced NA catalytic efficiency along with lower viral fitness. This helps to explain why K294 has predominantly been found in clinical cases of H7N9 infection under the selective pressure of oseltamivir treatment and not in the dominant human-infecting viruses. This implies that oseltamivir can still be efficiently used in the treatment of H7N9 infections.  相似文献   

6.
Deferriferrioxamine B (H3DFB) is a linear trihydroxamic acid siderophore with molecular formula NH2(CH2)5[N(OH)C(O)(CH2)2C(O)NH(CH2)5]2N(OH)C(O)CH3 that forms a kinetically and thermodynamically stable complex with iron(III), ferrioxamine B. Under the conditions of our study (pH = 4.30, 25 degrees C), ferrioxamine B, Fe(HDFB)+, is hexacoordinated and the terminal amine group is protonated. Addition of simple hydroxamic acids, R1C(O)N(OH)R2 (R1 = CH3, R2 = H; R1 = C6H5, R2 = H; R1 = R2 = CH3), to an aqueous solution of ferrioxamine B at pH = 4.30, 25.0 degrees C, I = 2.0, results in the formation of ternary complexes Fe(H2DFB)A+ and Fe(H3DFB)A2+, and tris complexes FeA3, where A- represents the bidendate hydroxamate anion R1C(O)N(O)R2-. The addition of a molar excess of ethylenediaminetetraacetic acid (EDTA) to an aqueous solution of ferrioxamine B at pH 4.30 results in a slow exchange of iron(III) to eventually completely form Fe(EDTA)- and H4DFB+. The addition of a hydroxamic acid, HA, catalyzes the rate of this iron exchange reaction: (formula; see text) A four parallel path mechanism is proposed for reaction (1) in which catalysis occurs via transient formation of the ternary and tris complexes Fe(H2DFB) A+, Fe(H3DFB)A2+, and FeA3. Rate and equilibrium constants for the various reaction paths to products were obtained and the influence of hydroxamic acid structure on catalytic efficiency is discussed. The importance of a low energy pathway for iron dissociation from a siderophore complex in influencing microbial iron bio-availability is discussed. The system represented by reaction (1) is proposed as a possible model for in vivo catalyzed release of iron from its siderophore complex at the cell wall or interior, where EDTA represents the intracellular storage depot or membrane-bound carrier and HA represents a low molecular weight hydroxamate-based metabolite capable of catalyzing interligand iron exchange.  相似文献   

7.
Sutejo R  Yeo DS  Myaing MZ  Hui C  Xia J  Ko D  Cheung PC  Tan BH  Sugrue RJ 《PloS one》2012,7(3):e33732
The host response to the low pathogenic avian influenza (LPAI) H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN) expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG) expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture.  相似文献   

8.
Sun Y  Bian C  Xu K  Hu W  Wang T  Cui J  Wu H  Ling Z  Ji Y  Lin G  Tian L  Zhou Y  Li B  Hu G  Yu N  An W  Pan R  Zhou P  Leng Q  Huang Z  Ma X  Sun B 《PloS one》2010,5(12):e14270

Background

The 2009 swine-origin influenza virus (S-OIV) H1N1 pandemic has caused more than 18,000 deaths worldwide. Vaccines against the 2009 A/H1N1 influenza virus are useful for preventing infection and controlling the pandemic. The kinetics of the immune response following vaccination with the 2009 A/H1N1 influenza vaccine need further investigation.

Methodology/Principal Findings

58 volunteers were vaccinated with a 2009 A/H1N1 pandemic influenza monovalent split-virus vaccine (15 µg, single-dose). The sera were collected before Day 0 (pre-vaccination) and on Days 3, 5, 10, 14, 21, 30, 45 and 60 post vaccination. Specific antibody responses induced by the vaccination were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). After administration of the 2009 A/H1N1 influenza vaccine, specific and protective antibody response with a major subtype of IgG was sufficiently developed as early as Day 10 (seroprotection rate: 93%). This specific antibody response could maintain for at least 60 days without significant reduction. Antibody response induced by the 2009 A/H1N1 influenza vaccine could not render protection against seasonal H1N1 influenza (seroconversion rate: 3% on Day 21). However, volunteers with higher pre-existing seasonal influenza antibody levels (pre-vaccination HI titer ≥1∶40, Group 1) more easily developed a strong antibody protection effect against the 2009 A/H1N1 influenza vaccine as compared with those showing lower pre-existing seasonal influenza antibody levels (pre-vaccination HI titer <1∶40, Group 2). The titer of the specific antibody against the 2009 A/H1N1 influenza was much higher in Group 1 (geometric mean titer: 146 on Day 21) than that in Group 2 (geometric mean titer: 70 on Day 21).

Conclusions/Significance

Recipients could gain sufficient protection as early as 10 days after vaccine administration. The protection could last at least 60 days. Individuals with a stronger pre-existing seasonal influenza antibody response may have a relatively higher potential for developing a stronger humoral immune response after vaccination with the 2009 A/H1N1 pandemic influenza vaccine.  相似文献   

9.
It is commonly perceived that the human immune system is naive to the newly emerged H5N1 virus. In contrast, most adults have been exposed to influenza A H1N1 and H3N2 viruses through vaccination or infection. Adults born before 1968 have likely been exposed to H2N2 viruses. We hypothesized that CD4(+) T cells generated in response to H1N1, H3N2, and H2N2 influenza A viruses also recognize H5N1 epitopes. Tetramer-guided epitope mapping and Ag-specific class II tetramers were used to identify H5N1-specific T cell epitopes and detect H5N1-specific T cell responses. Fifteen of 15 healthy subjects tested had robust CD4(+) T cell responses against matrix protein, nucleoprotein, and neuraminidase of the influenza A/Viet Nam/1203/2004 (H5N1) virus. These results are not surprising, because the matrix protein and nucleoprotein of influenza A viruses are conserved while the neuraminidase of the H5N1 virus is of the same subtype as that of the circulating H1N1 influenza strain. However, H5N1 hemagglutinin-reactive CD4(+) T cells were also detected in 14 of 14 subjects examined despite the fact that hemagglutinin is less conserved. Most were cross-reactive to H1, H2, or H3 hemagglutinin epitopes. H5N1-reactive T cells were also detected ex vivo, exhibited a memory phenotype, and were capable of secreting IFN-gamma, TNF-alpha, IL-5, and IL-13. These data demonstrate the presence of H5N1 cross-reactive T cells in healthy Caucasian subjects, implying that exposure to influenza A H1N1, H3N2, or H2N2 viruses through either vaccination or infection may provide partial immunity to the H5N1 virus.  相似文献   

10.
Influenza A and B infections are a worldwide health concern to both humans and animals. High genetic evolution rates of the influenza virus allow the constant emergence of new strains and cause illness variation. Since human influenza infections are often complicated by secondary factors such as age and underlying medical conditions, strain or subtype specific clinical features are difficult to assess. Here we infected ferrets with 13 currently circulating influenza strains (including strains of pandemic 2009 H1N1 [H1N1pdm] and seasonal A/H1N1, A/H3N2, and B viruses). The clinical parameters were measured daily for 14 days in stable environmental conditions to compare clinical characteristics. We found that H1N1pdm strains had a more severe physiological impact than all season strains where pandemic A/California/07/2009 was the most clinically pathogenic pandemic strain. The most serious illness among seasonal A/H1N1 and A/H3N2 groups was caused by A/Solomon Islands/03/2006 and A/Perth/16/2009, respectively. Among the 13 studied strains, B/Hubei-Wujiagang/158/2009 presented the mildest clinical symptoms. We have also discovered that disease severity (by clinical illness and histopathology) correlated with influenza specific antibody response but not viral replication in the upper respiratory tract. H1N1pdm induced the highest and most rapid antibody response followed by seasonal A/H3N2, seasonal A/H1N1 and seasonal influenza B (with B/Hubei-Wujiagang/158/2009 inducing the weakest response). Our study is the first to compare the clinical features of multiple circulating influenza strains in ferrets. These findings will help to characterize the clinical pictures of specific influenza strains as well as give insights into the development and administration of appropriate influenza therapeutics.  相似文献   

11.
The effect of phospholipid liposomes and surfactant micelles on the rate of nitric oxide release from zwitterionic diazeniumdiolates, R1R2N[N(O)NO]-, with significant hydrophobic structure, has been explored. The acid-catalyzed dissociation of NO has been examined in phosphate-buffered solutions of sodium dodecylsulfate (SDS) micelles and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-[phospho-(1-glycerol)] sodium salt (DPPG) phospholipid liposomes. The reaction behavior of dibenzylamine-, monobenzylamine-, and dibutylamine-derived substrates [1]: R1 = C6H5CH2, R2 = C6H5CH2 NH2+(CH2)2, 2: R1 = C6H5CH2, R2 = NH3+(CH2)2, and 3: R1 = n-butyl, R2 = n-butyl-NH2+(CH2)6] has been compared with that of SPER/NO, 4: R1 = H2N(CH2)3, R2 = H2N(CH2) 3NH2+(CH2)4]. Catalysis of NO release is observed in both micellar and liposome media. Hydrophobic interactions contribute to micellar binding for 1-3 and appear to be the main factor facilitating catalysis by charge neutral DPPC liposomes. Binding constants for the association of 1 and 3 with SDS micelles were 3-fold larger than those previously obtained with comparable zwitterionic substrates lacking their hydrophobic structure. Anionic DPPG liposomes were much more effective in catalyzing NO release than either DPPC liposomes or SDS micelles. DPPG liposomes (at 10 mM total lipid) induced a 30-fold increase in the NO dissociation rate of SPER/NO compared to 12- and 14-fold increases in that of 1 and 3.  相似文献   

12.
Metachromatic leukodystrophy is a lysosomal storage disorder caused by the deficiency of arylsulfatase A. This leads to the accumulation of 3-O-sulfogalactosylceramide, which results in severe demyelination. Here we describe a novel non-sense mutation W124ter and two disease-causing missense mutations E382Q and C500F in arylsulfatase A gene. Another so far unknown allele harbors three sequence alterations: two polymorphisms (N350S, R496H) and a missense mutation (R288H). The R288H substitution and the N350S polymorphism have previously been found on one allele together with a polymorphism in a polyadenylation signal characteristic for the arylsulfatase A pseudodeficiency allele. The R496H has been shown to occur on another allele. The presence of the R288H, N350S, and R496H substitution on one allele in the absence of the polyadenylation site polymorphism shows that this allele has probably arisen by recombination between the nucleotides of codon 350 and 496.  相似文献   

13.
TREX1 is a 3′-deoxyribonuclease that degrades single- and double-stranded DNA (ssDNA and dsDNA) to prevent inappropriate nucleic acid-mediated immune activation. More than 40 different disease-causing TREX1 mutations have been identified exhibiting dominant and recessive genetic phenotypes in a spectrum of autoimmune disorders. Mutations in TREX1 at positions Asp-18 and Asp-200 to His and Asn exhibit dominant autoimmune phenotypes associated with the clinical disorders familial chilblain lupus and Aicardi-Goutières syndrome. Our previous biochemical studies showed that the TREX1 dominant autoimmune disease phenotype depends upon an intact DNA-binding process coupled with dysfunctional active site chemistry. Studies here show that the TREX1 Arg-62 residues extend across the dimer interface into the active site of the opposing protomer to coordinate substrate DNA and to affect catalysis in the opposing protomer. The TREX1R62A/R62A homodimer exhibits ∼50-fold reduced ssDNA and dsDNA degradation activities relative to TREX1WT. The TREX1 D18H, D18N, D200H, and D200N dominant mutant enzymes were prepared as compound heterodimers with the TREX1 R62A substitution in the opposing protomer. The TREX1D18H/R62A, TREX1D18N/R62A, TREX1D200H/R62A, and TREX1D200N/R62A compound heterodimers exhibit higher levels of ss- and dsDNA degradation activities than the homodimers demonstrating the requirement for TREX1 Arg-62 residues to provide necessary structural elements for full catalytic activity in the opposing TREX1 protomer. This concept is further supported by the loss of dominant negative effects in the TREX1 D18H, D18N, D200H, and D200N compound heterodimers. These data provide compelling evidence for the required TREX1 dimeric structure for full catalytic function.  相似文献   

14.
Nucleotide sequences have been determined for complementary DNA transcribed from the 3' ends of RNA segments 7 (matrix gene) and 8 (nonstructural gene) from a number of human influenza A viruses isolated over a period of 43 years and representing H0N1, H1N1, H2N2, and H3N2 subtypes. The pattern of nucleotide variation in both genes suggests that RNA segments 7 and 8 were conserved during the reassortment events which were responsible for the antigenic shifts H1N1 leads to H2N2 and H2N2 leads to H3N2. During the 23-year period between the isolation of A/PR/8/34(H0N1) and A/RI/5-/57(H2N2), substitutions have occurred at 7 of 230 nucleotides in RNA segment 7 and 13 of 220 nucleotides in RNA segment 8, and in 20 years A/RI/5-/57(H2N2) to A/Canberra Grammar/77(H3N2) substitutions have occurred at 5 of 230 nucleotides in RNA segment 7 and 12 of 220 nucleotides in RNA segment 8. These give rise to 2 of 67, 5 of 64, 1 of 67, and 5 of 64 amino acid changes, respectively. The number of nucleotide and amino acid changes observed is of the same order of magnitude as that which occurs over a comparable period of drift in RNA segments 4 and 6, which code for the variable antigenic determinants hemagglutinin and neuraminidase.  相似文献   

15.
We have previously demonstrated that the globular head of the hemagglutinin (HA) antigen fused to flagellin of Salmonella typhimurium fljB (STF2, a TLR5 ligand) elicits protective immunity to H1N1 and H5N1 lethal influenza infections in mice (Song et al., 2008, PLoS ONE 3, e2257; Song et al., 2009, Vaccine 27, 5875–5888). These fusion proteins can be efficiently and economically manufactured in E. coli fermentation systems as next generation pandemic and seasonal influenza vaccines. Here we report immunogenicity and efficacy results of three vaccine candidates in which the HA globular head of A/California/07/2009 (H1N1) was fused to STF2 at the C-terminus (STF2.HA1), in replace of domain 3 (STF2R3.HA1), or in both positions (STF2R3.2xHA1). For all three vaccines, two subcutaneous immunizations of BALB/c mice with doses of either 0.3 or 3 µg elicit robust neutralizing (HAI) antibodies, that lead to > = 2 Log10 unit reduction in day 4 lung virus titer and full protection against a lethal A/California/04/2009 challenge. Vaccination with doses as low as 0.03 µg results in partial to full protection. Each candidate, particularly the STF2R3.HA1 and STF2R3.2xHA1 candidates, elicits robust neutralizing antibody responses that last for at least 8 months. The STF2R3.HA1 candidate, which was intermediately protective in the challenge models, is more immunogenic than the H1N1 components of two commercially available trivalent inactivated influenza vaccines (TIVs) in mice. Taken together, the results demonstrate that all three vaccine candidates are highly immunogenic and efficacious in mice, and that the STF2R3.2xHA1 format is the most effective candidate vaccine format.  相似文献   

16.
The influenza A virus protein PB1-F2 has been linked to the pathogenesis of both primary viral and secondary bacterial infections. H3N2 viruses have historically expressed full-length PB1-F2 proteins with either proinflammatory (e.g., from influenza A/Hong Kong/1/1968 virus) or noninflammatory (e.g., from influenza A/Wuhan/359/1995 virus) properties. Using synthetic peptides derived from the active C-terminal portion of the PB1-F2 protein from those two viruses, we mapped the proinflammatory domain to amino acid residues L62, R75, R79, and L82 and then determined the role of that domain in H3N2 influenza virus pathogenicity. PB1-F2-derived peptides containing that proinflammatory motif caused significant morbidity, mortality, and pulmonary inflammation in mice, manifesting as increased acute lung injury and the presence of proinflammatory cytokines and inflammatory cells in the lungs compared to peptides lacking this motif, and better supported bacterial infection with Streptococcus pneumoniae. Infections of mice with an otherwise isogenic virus engineered to contain this proinflammatory sequence in PB1-F2 demonstrated increased morbidity resulting from primary viral infections and enhanced development of secondary bacterial pneumonia. The presence of the PB1-F2 noninflammatory (P62, H75, Q79, and S82) sequence in the wild-type virus mediated an antibacterial effect. These data suggest that loss of the inflammatory PB1-F2 phenotype that supports bacterial superinfection during adaptation of H3N2 viruses to humans, coupled with acquisition of antibacterial activity, contributes to the relatively diminished frequency of severe infections seen with seasonal H3N2 influenza viruses in recent decades compared to their first 2 decades of circulation.  相似文献   

17.
While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for the modeling of human lung pathology in this species. Genetic determinants of mouse-adapted 2009 H1N1 viral pathogenicity have been identified, but the molecular and signaling characteristics of the host response following infection with this adapted virus have not been described. Here we compared the gene expression response following infection of mice with A/CA/04/2009 (CA/04) or the virulent mouse-adapted strain (MA-CA/04). Microarray analysis revealed that increased pathogenicity of MA-CA/04 was associated with the following: (i) an early and sustained inflammatory and interferon response that could be driven in part by interferon regulatory factors (IRFs) and increased NF-κB activation, as well as inhibition of the negative regulator TRIM24, (ii) early and persistent infiltration of immune cells, including inflammatory macrophages, and (iii) the absence of activation of lipid metabolism later in infection, which may be mediated by inhibition of nuclear receptors, including PPARG and HNF1A and -4A, with proinflammatory consequences. Further investigation of these signatures in the host response to other H1N1 viruses of various pathogenicities confirmed their general relevance for virulence of influenza virus and suggested that lung response to MA-CA/04 virus was similar to that following infection with lethal H1N1 r1918 influenza virus. This study links differential activation of IRFs, nuclear receptors, and macrophage infiltration with influenza virulence in vivo.  相似文献   

18.
19.
Eosinophilic Esophagitis (EoE) is a chronic allergic disorder, whose pathobiology is incompletely understood. Histamine-producing cells including mast cells and basophils have been implicated in EoE. However, very little is currently known about the role of histamine and histamine receptor (HR) expression and signaling in the esophageal epithelium. Herein, we characterized HR (H1R, H2R, H3R, and H4R) expression in human esophageal biopsies and investigate the role of histamine signaling in inducible cytokine expression in human esophageal epithelial cells in vitro. HR expression was quantified in esophageal biopsies from non-EoE control (N = 23), inactive EoE (<15 eos/hpf, N = 26) and active EoE (>15 eos/hpf, N = 22) subjects using qRT-PCR and immunofluorescent localization. HR expression and histamine-mediated cytokine secretion were evaluated in human primary and telomerase-immortalized esophageal epithelial cells. H1R, H2R, and H4R expression were increased in active EoE biopsies compared to inactive EoE and controls. H2R was the most abundantly expressed receptor, and H3R expression was negligible in all 3 cohorts. Infiltrating eosinophils expressed H1R, H2R, and H4R, which contributed to the observed increase in HR in active subjects. H1R and H2R, but not H3R or H4R, were constitutively expressed by primary and immortalized cells, and epithelial histamine stimulation induced GM-CSF, TNFα, and IL-8, but not TSLP or eotaxin-3 secretion. Epithelial priming with the TLR3 ligand poly (I:C) induced H1R and H2R expression, and enhanced histamine-induced GM-CSF, TNFα, and IL-8 secretion. These effects were primarily suppressed by H1R antagonists, but unaffected by H2R antagonism. Histamine directly activates esophageal epithelial cytokine secretion in vitro in an H1R dependent fashion. However, H1R, H2R and H4R are induced in active inflammation in EoE in vivo. While systemic antihistamine (anti-H1R) therapy may not induce clinical remission in EoE, our study suggests that further study of histamine receptor signaling in EoE is warranted and that targeting of additional histamine receptors may lead to novel treatment strategies for this important disease.  相似文献   

20.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号