首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Ozawa  J Ayub  S Kajigaya  T Shimada    N Young 《Journal of virology》1988,62(8):2884-2889
The B19 parvovirus is a cause of bone marrow failure in humans. B19 is toxic to erythroid progenitor cells in vitro. Viral products possibly responsible for toxicity were explored by transfection of cloned B19 genome into HeLa cells. The nonstructural (NS) protein was detected in cells 30 h after transfection. Plasmids containing the B19 genome were transfected with selectable marker genes in stable transformation assays. Plasmids that contained the left side of the B19 genome, which encodes the NS protein of the virus, inhibited antibiotic-resistant colony formation. Transformation occurred when NS protein expression was blocked by mutation. Suppression of transformation by NS protein was not tissue specific, suggesting a role for NS protein in toxicity for nonpermissive cells without parvovirus replication or virion accumulation.  相似文献   

2.
Parvovirus B19 is a common human pathogen which can cause severe syndromes, including aplastic anemia and fetal hydrops. The mapping of the first parvovirus B19-derived CD8(+) T-lymphocyte epitope is described. This HLA-B35-restricted peptide derives from the nonstructural (NS1) protein and is strongly immunogenic in B19 virus-seropositive donors.  相似文献   

3.
4.
We determined the complete nucleotide sequence of bovine parvovirus (BPV), an autonomous parvovirus. The sequence is 5,491 nucleotides long. The terminal regions contain nonidentical imperfect palindromic sequences of 150 and 121 nucleotides. In the plus strand, there are three large open reading frames (left ORF, mid ORF, and right ORF) with coding capacities of 729, 255, and 685 amino acids, respectively. As with all parvoviruses studied to date, the left ORF of BPV codes for the nonstructural protein NS-1 and the right ORF codes for the major parts of the three capsid proteins. The mid ORF probably encodes the major part of the nonstructural protein NP-1. There are promoterlike sequences at map units 4.5, 12.8, and 38.7 and polyadenylation signals at map units 61.6, 64.6, and 98.5. BPV has little DNA homology with the defective parvovirus AAV, with the human autonomous parvovirus B19, or with the other autonomous parvoviruses sequenced (canine parvovirus, feline panleukopenia virus, H-1, and minute virus of mice). Even though the overall DNA homology of BPV with other parvoviruses is low, several small regions of high homology are observed when the amino acid sequences encoded by the left and right ORFs are compared. From these comparisons, it can be shown that the evolutionary relationship among the parvoviruses is B19 in equilibrium with AAV in equilibrium with BPV in equilibrium with MVM. The highly conserved amino acid sequences observed among all parvoviruses may be useful in the identification and detection of parvoviruses and in the design of a general parvovirus vaccine.  相似文献   

5.
人细小病毒B19分子生物学研究进展   总被引:1,自引:0,他引:1  
人细小病毒B19 (Human parvovirus B19,简称B19病毒),是目前为止已知能够感染并引起人类疾病的两种细小病毒科成员之一。B19病毒作为一种重要病原,能够引起如儿童传染性红斑、急性再障危象、胎儿水肿甚至死胎等疾病。文中从B19病毒基因型、病毒受体、基因组结构特点与复制、病毒转录与转录后调控、病毒非结构和结构蛋白特点与功能以及病毒诊断及抗病毒药物研究策略6个方面来综述B19病毒的最新研究进展,以期为B19病毒致病机制的深入研究与治疗诊断策略的制定提供参考。  相似文献   

6.
7.
8.
Infections caused by human parvovirus B19 are known to be controlled mainly by neutralizing antibodies. To analyze the immune reaction against parvovirus B19 proteins, four cell lines secreting human immunoglobulin G monoclonal antibodies (MAbs) were generated from two healthy donors and one human immunodeficiency virus type 1-seropositive individual with high serum titers against parvovirus. One MAb is specific for nonstructural protein NS1 (MAb 1424), two MAbs are specific for the unique region of minor capsid protein VP1 (MAbs 1418-1 and 1418-16), and one MAb is directed to major capsid protein VP2 (MAb 860-55D). Two MAbs, 1418-1 and 1418-16, which were generated from the same individual have identity in the cDNA sequences encoding the variable domains, with the exception of four base pairs resulting in only one amino acid change in the light chain. The NS1- and VP1-specific MAbs interact with linear epitopes, whereas the recognized epitope in VP2 is conformational. The MAbs specific for the structural proteins display strong virus-neutralizing activity. The VP1- and VP2-specific MAbs have the capacity to neutralize 50% of infectious parvovirus B19 in vitro at 0.08 and 0.73 μg/ml, respectively, demonstrating the importance of such antibodies in the clearance of B19 viremia. The NS1-specific MAb mediated weak neutralizing activity and required 47.7 μg/ml for 50% neutralization. The human MAbs with potent neutralizing activity could be used for immunotherapy of chronically B19 virus-infected individuals and acutely infected pregnant women. Furthermore, the knowledge gained regarding epitopes which induce strongly neutralizing antibodies may be important for vaccine development.  相似文献   

9.
Chen AY  Qiu J 《Future virology》2010,5(6):731-743
The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest.  相似文献   

10.
The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have shown that transient transfection of B19 NS1 into human liver carcinoma (HepG2) cells initiates the intrinsic apoptotic cascade, ultimately resulting in cell death. In an effort to elucidate the mechanism of mammalian cell demise in the presence of B19 NS1, we undertook a mutagenesis analysis of the protein's endonuclease domain. Our studies have shown that, unlike wild-type NS1, which induces an accumulation of DNA damage, S phase arrest and apoptosis in HepG2 cells, disruptions in the metal coordination motif of the B19 NS1 protein reduce its ability to induce DNA damage and to trigger S phase arrest and subsequent apoptosis. These studies support our hypothesis that, in the absence of replicating B19 genomes, NS1-induced host cell DNA damage is responsible for apoptotic cell death observed in parvoviral infection of non-permissive mammalian cells.  相似文献   

11.
The hepatitis C virus (HCV) nonstructural (NS) protein 4B is known for protein–protein interactions with virus and host cell factors. Only little is known about the corresponding protein binding sites and underlying molecular mechanisms. Recently, we have predicted a putative basic leucine zipper (bZIP) motif within the aminoterminal part of NS4B. The aim of this study was to investigate the importance of this NS4B bZIP motif for specific protein–protein interactions. We applied in silico approaches for 3D‐structure modeling of NS4B‐homodimerization via the bZIP motif and identified crucial amino acid positions by multiple sequence analysis. The selected sites were used for site‐directed mutagenesis within the NS4B bZIP motif and subsequent co‐immunoprecipitation of wild‐type and mutant NS4B molecules. Respective interaction energies were calculated for wild‐type and mutant structural models. NS4B‐homodimerization with a gradual alleviation of dimer interaction from wild‐type towards the mutant‐dimers was observed. The putative bZIP motif was confirmed by a co‐immunoprecipitation assay and western blot analysis. NS4B‐NS4B interaction depends on the integrity of the bZIP hydrophobic core and can be abolished due to changes of crucial residues within NS4B. In conclusion, our data indicate NS4B‐homodimerization and that this interaction is facilitated by the aminoterminal part containing a bZIP motif.  相似文献   

12.
13.
In the course of systematic analysis of protein sequences containing the purine NTP-binding motif, a new superfamily was delineated which included 25 established or putative helicases of Escherichia coli, yeast, insects, mammals, pox- and herpesviruses, a yeast mitochondrial plasmid and three groups of positive strand RNA viruses. These proteins contained 7 distinct highly conserved segments two of which corresponded to the "A" and "B" sites of the NTP-binding motif. Typical of the new superfamily was an abridged consensus for the "A" site, GxGKS/T, instead of the classical G/AxxxxGKS/T. Secondary structure predictions indicated that each of the conserved segments might constitute a separate structural unit centering at a beta-turn. All previously characterized mutations impairing the function of the yeast helicase RAD3 in DNA repair mapped to one of the conserved segments. A degree of similarity was revealed between the consensus pattern of conserved amino acid residues derived for the new superfamily and that of another recently described protein superfamily including a different set of prokaryotic, eukaryotic and viral (putative) helicases.  相似文献   

14.
Statistically significant similarity was revealed between amino acid sequences of NTP-binding pattern-containing domains which are among the most conserved protein segments in dissimilar groups of ss and dsDNA viruses (papova-, parvo-, geminiviruses and P4 bacteriophage), and RNA viruses (picorna-, como- and nepoviruses) with small genomes. Within the aligned domains of 100-120 amino acid residues, three highly conserved sequence segments have been identified, i.e. 'A' and 'B' motifs of the NTP-binding pattern, and a third, C-terminal motif 'C', not described previously. The sequence of the 'B' motif in the proteins of the new superfamily is unusually variable, with substitutions, in some of the members, of the Asp residue conserved in other NTP-binding proteins. The 'C' motif is characterized by an invariant Asn residue preceded by a stretch of hydrophobic residues. As the new superfamily included a well studied DNA and RNA helicase, T antigen of SV40, helicase function could be tentatively assigned also to the other related viral putative NTP-binding proteins. On the other hand, the possibility of different and/or multiple functions for some of these proteins is discussed.  相似文献   

15.
16.
17.
Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights of 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Restriction endonuclease fragments of this cloned B19 genome were treated with BAL 31 and shotgun cloned into the open reading frame expression vector pJS413. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.  相似文献   

18.
The etiology of multiple sclerosis (MS) remains unclear. To determine if autoantibodies to myelin basic protein (MBP) are produced during parvovirus B19 infection, a competitive ELISA was performed using plasma from MS patients exhibiting high IgG titers for parvovirus. Our results showed the addition of MBP decreased the binding of IgG to B19 antigen in a dose dependent fashion suggesting a possible link between parvovirus B19 and a subset of patients with clinical MS.  相似文献   

19.
构建表达质粒pcDNA3 VP2,将其转染CHO细胞建立了稳定表达的细胞系;用间接免疫荧光法和Western印迹证明了表达的VP2蛋白的特异性。对昆虫杆状病毒系统表达的VP2蛋白作初步纯化。分别用由大肠杆菌、CHO细胞和昆虫杆状病毒表达系统表达的VP2蛋白,以间接免疫荧光法和ELISA法检测人群血清中的VP2抗体,结果表明,间接免疫荧光法的敏感性高于ELISA法。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号