共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-lactam antibiotics comprise the largest group of antibacterial agents. Due to their bactericidal properties and limited toxicity to humans they are preferred in antimicrobial therapy. In most cases, therapy is empiric since susceptibility testing in diagnostic laboratories takes a relatively long time. This paper presents a novel platform that is based on the microbial fuel cell (MFC) technology and focuses on the early antibiogram determination of isolates against a series of beta-lactam antibiotics. An advantage of the system is that it can be integrated into traditional microbiological diagnostic laboratory procedures. Tested bacterium suspensions are uploaded into the anodic chambers of each miniaturized MFC unit integrated into a panel system, containing different antibiotic solutions. Electronic signals gained in each MFC unit are continuously monitored and are proportional to the metabolic activity of the presenting test bacterium. Using this method, antibiotic susceptibility can be evaluated in 2–4 h after inoculation. Hereby we demonstrate the efficacy of the platform in antibiogram determination by testing the susceptibilities of Escherichia coli strain ATCC 25922 and Staphylococcus aureus strain ATCC 29213 against 10 beta-lactam antibiotics (penicillin, ampicillin, ticarcillin, cefazolin, cefuroxime, cefoperazone, cefepime, cefoxitin, cefaclor, imipenem). This paper also presents the construction of the background instrumentation and the panel system into which a printed circuit board (PCB) based electrode was integrated. Our results suggest that MFC based biosensors have the potential to be used in diagnostics for antibiogram determination. 相似文献
2.
A wall-jet microbial fuel cell (MFC) was developed for the monitoring of anaerobic digestion (AD). This biofilm based MFC biosensor had a character of being portable, short hydraulic retention time (HRT) for sample flow through and convenient for continuous operation. The MFC was installed in the recirculation loop of an upflow anaerobic fixed-bed (UAFB) reactor in bench-scale where pH of the fermentation broth and biogas flow were monitored in real time. External disturbances to the AD were added on purpose by changing feedstock concentration, as well as process configuration. MFC signals had good correlations with online measurements (i.e. pH, gas flow rate) and offline analysis (i.e. COD) over 6-month operation. These results suggest that the MFC signal can reflect the dynamic variation of AD and can potentially be a valuable tool for monitoring and control of bioprocess. 相似文献
3.
Artificial microbial co-cultures were formed to develop the receptor element of a biosensor for assessment of biological oxygen demand (BOD). The co-cultures possessed broad substrate specificities and enabled assays of water and fermentation products within a broad BOD range (2.4–80 mg/dm3) with a high correlation to the standard method (R = 0.9988). The use of the co-cultures of the yeasts Pichia angusta, Arxula adeninivorans and Debaryomyces hansenii immobilized in N-vinylpyrrolidone-modified poly(vinyl alcohol) enabled developing a BOD biosensor possessing the characteristics not inferior to those in the known biosensors. The results are indicative of a potential of using these co-cultures as the receptor element base in prototype models of instruments for broad application. 相似文献
4.
The influence of external load on the composition of the anodic biofilm microbial community and biomass yield was investigated in a microbial fuel cell fed with glucose and domestic wastewater was used as source of electrogens. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplified 16S rRNA gene fragments revealed distinct differences in anodic bacterial communities formed at the anode of each MFC operated under a different external load. These results implied that in an MFC, electrogenic bacteria were enriched under higher current densities, i.e., low external load, and were able to sustain better current and effluent quality. The influence of the external resistance applied to the MFCs during formation of the bacterial communities from sewage wastewater was shown to have no significant effect on power performance of the MFCs nor to have a significant influence on their anodic activity with both glucose and brewery wastewater as fuel. As expected, current generation, COD removal and the biomass yield were all directly influenced by the external load. Significantly, when operated under lower external load, the biomass yield in the MFC was less than that in conventional anaerobic digestion (i.e., control). 相似文献
5.
Immobilised activated sludge based biosensor for biochemical oxygen demand measurement 总被引:5,自引:0,他引:5
A biochemical oxygen demand (BOD) sensor, based on an immobilised mixed culture of microorganisms in combination with a dissolved oxygen electrode, has been developed for the purpose of on-line monitoring of the biological treatment process for waste and wastewater. The sensor was designed for easy replacement of the biomembrane, thereby making it suitable for short-term use. The drawbacks of activated sludge based sensor, such as short sensor lifetime, were thereby circumvented. The sensor BOD measurements were carried out in the kinetic mode using a flow injection system, resulting in 25 s for one measurement followed by 4–8 min recovery time. Based on the results of normalised sensor responses, the OECD synthetic wastewater was considered to be a more suitable calibration solution in comparison with the GGA solution. Good agreement was achieved between the results of the sensor BOD measurement and those obtained from BOD5 analysis of a wastewater sample from a food-processing factory. Reproducibility of responses using one sensor was below ±5.6% standard deviation. Reproducibility of responses using different sensors was within acceptable bias limits, viz. ±15% standard deviation. 相似文献
6.
Ming Li Minghua Zhou Xiaoyu Tian Chaolin Tan Cameron T. McDaniel Daniel J. Hassett Tingyue Gu 《Biotechnology advances》2018,36(4):1316-1327
Within the past 5?years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both “clean” bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs. 相似文献
7.
Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment 总被引:1,自引:0,他引:1
Microbial fuel cell (MFC) based sensing was explored to provide for the development of an in situ bioremediation monitoring approach for substrate concentrations and microbial respiration rates. MFC systems were examined in column systems where Shewanella oneidensis MR1 used an external electron acceptor (an electrode) to metabolize lactate (a bioremediation additive) to acetate. Column systems were operated with varying influent lactate concentrations (0-41 mM) and monitored for current generation (0.01-0.39 mA). Biological current generation paralleled bulk phase lactate concentration both in the influent and in the bulk phase at the anode; current values were correlated to lactate concentration at the anode (R(2) = 0.9), The electrical signal provided real-time information for electron donor availability and biological activity. These results have practical implications for efficient and inexpensive real-time monitoring of in situ bioremediation processes where information on substrate concentrations is often difficult to obtain and where information on the rate and nature of metabolic processes is needed. 相似文献
8.
Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell 总被引:10,自引:0,他引:10
A microbial fuel cell type of biosensor was used to determine the biochemical oxygen demand (BOD) of wastewater. The biosensor gave a good correlation between the BOD value and the coulomb produced. The BOD sensor has been operated for over 5 years in a stable manner without any servicing. This is much longer that that of previously reported BOD biosensors. 相似文献
9.
10.
Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell 总被引:1,自引:0,他引:1
Shimoyama T Komukai S Yamazawa A Ueno Y Logan BE Watanabe K 《Applied microbiology and biotechnology》2008,80(2):325-330
A new highly scalable microbial fuel cell (MFC) design, consisting of a series of cassette electrodes (CE), was examined for increasing power production from organic matter in wastewater. Each CE chamber was composed of a box-shaped flat cathode (two air cathodes on both sides) sandwiched in between two proton-exchange membranes and two graphite-felt anodes. Due to the simple design of the CE-MFC, multiple cassettes can be combined to form a single unit and inserted into a tank to treat wastewater. A 12-chamber CE-MFC was tested using a synthetic wastewater containing starch, peptone, and fish extract. Stable performance was obtained after 15 days of operation in fed-batch mode, with an organic removal efficiency of 95% at an organic loading rate of 2.9 kg chemical oxygen demand (COD) per cubic meter per day and an efficiency of 93% at 5.8 kg COD per cubic meter per day. Power production was stable during this period, reaching maximum power densities of 129 W m(-3) (anode volume) and 899 mW m(-2) (anode projected area). The internal resistance of CE-MFC decreased from 2.9 (day 4) to 0.64 Omega (day 25). These results demonstrate the usefulness of the CE-MFC design for energy production and organic wastewater treatment. 相似文献
11.
A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy 总被引:20,自引:0,他引:20
A microbial fuel cell (MFC) is a bioreactor that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. It has been known for many years that it is possible to generate electricity directly by using bacteria to break down organic substrates. The recent energy crisis has reinvigorated interests in MFCs among academic researchers as a way to generate electric power or hydrogen from biomass without a net carbon emission into the ecosystem. MFCs can also be used in wastewater treatment facilities to break down organic matters. They have also been studied for applications as biosensors such as sensors for biological oxygen demand monitoring. Power output and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configuration of the MFC and operating conditions. Currently, real-world applications of MFCs are limited because of their low power density level of several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This article presents a critical review on the recent advances in MFC research with emphases on MFC configurations and performances. 相似文献
12.
Taste receptor cells are the taste sensation elements expressing sour, salty, sweet, bitter and umami receptors, respectively. There are cell-to-cell communications between different types of cells. Nevertheless, the mechanism of taste sensation and taste information coded by taste receptor cell is not well understood at present and it is a long-standing issue. In order to explore taste sensation and analyze taste-firing responses from another point of view, we present a promising biomimetic taste receptor cell-based biosensor. The temporal firing responses to different tastants are recorded. Meanwhile, we investigate the firing rate and temporal firing of taste receptor cells. The experimental results are consistent with that from patch clamp and molecular biology experiment. Firing rate is dependent on the concentration of stimulus. PCA analysis (principal component analysis) of the temporal firing responses shows that the responses from different types of taste receptor cells can be distinguished. Furthermore, exogenous ATP is applied to mimic the effects of transmitter ATP (adenosine triphosphate) released from type II cells onto type III cells. Both enhanced and inhibitory effects on spontaneous firing are observed. This novel biomimetic hybrid biosensor provides a potential solution to investigate the taste sensation and coding mechanisms in a non-invasive way. 相似文献
13.
Olivier Lefebvre Wai K. Ooi Zhe Tang Md. Abdullah-Al-Mamun Daniel H.C. Chua How Y. Ng 《Bioresource technology》2009,100(20):4907-4910
Microbial fuel cells (MFCs) are considered as a promising way for the direct extraction of biochemical energy from biomass into electricity. However, scaling up the process for practical applications and mainly for wastewater treatment is an issue because there is a necessity to get rid of unsustainable platinum (Pt) catalyst. In this study, we developed a low-cost cathode for a MFC making use of sputter-deposited cobalt (Co) as the catalyst and different types of cathode architecture were tested in a single-chambered air-cathode MFC. By sputtering the catalyst on the air-side of the cathode, increased contact with ambient oxygen significantly resulted in higher electricity generation. This outcome was different from previous studies using conventionally-coated Pt cathodes, which was due to the different technology used. 相似文献
14.
A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor 总被引:5,自引:0,他引:5
Mediator-less microbial fuel cells (MFC) enriched with oligotrophic microbes were optimized through enhancement of cathode reaction and lowering O2 diffusion into the anode compartment as a low BOD sensor. The optimization of the MFC has greatly improved the maximum current and coulomb yield. The oligotroph-type MFC could be used as a low BOD sensor with high operational stability, good repeatability and reproducibility. 相似文献
15.
Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste 总被引:1,自引:0,他引:1
Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470 Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m2 was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m2 was recorded. 相似文献
16.
Jia YH Tran HT Kim DH Oh SJ Park DH Zhang RH Ahn DH 《Bioprocess and biosystems engineering》2008,31(4):315-321
Simultaneous organics removal and bio-electrochemical denitrification using a microbial fuel cell (MFC) reactor were investigated in this study. The electrons produced as a result of the microbial oxidation of glucose in the anodic chamber were transferred to the anode, which then flowed to the cathode in the cathodic chamber through a wire, where microorganisms used the transferred electrons to reduce the nitrate. The highest power output obtained on the MFCs was 1.7 mW/m(2) at a current density of 15 mA/m(2). The maximum volumetric nitrate removal rate was 0.084 mg NO(3)(-)-N cm(-2) (electrode surface area) day(-1). The coulombic efficiency was about 7%, which demonstrated that a substantial fraction of substrate was lost without current generation. 相似文献
17.
Challenges in microbial fuel cell development and operation 总被引:3,自引:0,他引:3
A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of
microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process,
and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In
this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance. 相似文献
18.
The biochemical oxygen demand (BOD) value is still a key parameter that can determine the level of organics, particularly
the content of biodegradable organics in water. In this work, the effects of sample dilution, which should be done inevitably
to get appropriate dissolved oxygen (DO) depletion, on the measurement of 5-day BOD (BOD5), was investigated with and without seeding using natural and synthetic water. The dilution effects were also evaluated for
water samples taken in different seasons such as summer and winter because water temperature can cause a change in the types
of microbial species, thus leading to different oxygen depletion profiles during BOD testing. The predation phenomenon between
microbial cells was found to be dependent on the inorganic nutrients and carbon sources, showing a change in cell populations
according to cell size after 5-day incubation. The dilution of water samples for BOD determination was linked to changes in
the environment for microbial growth such as nutrition. The predation phenomenon between microbial cells was more important
with less dilution. BOD5 increased with the specific amount of inorganic nutrient per microbial mass when the natural water was diluted. When seeding
was done for synthetic water samples, the seed volume also affected BOD due to the rate of organic uptake by microbes. BOD5 increased with the specific bacterial population per organic source supplied at the beginning of BOD measurement. For more
accurate BOD measurements, specific guidelines on dilution should be established. 相似文献
19.
Micro-sized microbial fuel cell: A mini-review 总被引:1,自引:0,他引:1
Hsiang-Yu Wang Angela BernardaChih-Yung Huang Duu-Jong LeeJo-Shu Chang 《Bioresource technology》2011,102(1):235-243
This review presents the development of micro-sized microbial fuel cells (including mL-scale and μL-scale setups), with summarization of their advantageous characteristics, fabrication methods, performances, potential applications and possible future directions. The performance of microbial fuel cells (MFCs) is affected by issues such as mass transport, reaction kinetics and ohmic resistance. These factors are manipulated in micro-sized MFCs using specially allocated electrodes constructed with specified materials having physically or chemically modified surfaces. Both two-chamber and air-breathing cathodes are promising configurations for mL-scale MFCs. However, most of the existing μL-scale MFCs generate significantly lower volumetric power density compared with their mL-counterparts because of the high internal resistance. Although μL-scale MFCs have not yet to provide sufficient power for operating conventional equipment, they show great potential in rapid screening of electrochemically microbes and electrode performance. Additional possible applications and future directions are also provided for the development of micro-sized MFCs. 相似文献
20.
Microbial fuel cells are attracting attention as one of the systems for producing electrical energy from organic compounds. We used commercial baker's yeast (Saccharomyces cerevisiae) for a glucose fuel cell because the yeast is a safe organism and relatively high power can be generated in the system. In the present study, a milliliter (mL)-scale dual-chamber fuel cell was constructed for evaluating the power generated by a variety of yeasts and their mutants, and the optimum conditions for high performance were investigated. When carbon fiber bundles were used as an electrode in the fuel cell, high volumetric power density was obtained. The maximum power produced per volume of anode solution was 850 W/m3 under optimum conditions. Furthermore, the power was examined using seven kinds of yeast. In Kluyveromyces marxianus, not only the power but also the power per consumed glucose was high. Moreover, it was suggested that xylose is available as fuel for the fuel cell. The fuel cell powered by K. marxianus may prove to be helpful for the effective utilization of woody biomass. 相似文献