首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method has been developed which provides reliable estimates of enzyme kinetic constants from single reaction progress curves recorded under conditions of continuously increasing substrate concentration. Equally spaced data points simulating such progress curves and containing known amounts of superimposed random noise were fit to the Hill equation by (i) direct nonlinear curve-fitting of raw data, and (ii) a tangent-slope technique in which the raw data are numerically differentiated, transformed into substrate versus velocity data, and then analyzed as linear plots. Both integral and differential procedures provided accurate and precise estimates of the Hill parameters (S0.5, V, and n) from single reaction mixtures. However, the tangent-slope method was at least 10-fold faster to compute and was not dependent on accurate initial guesses of the Hill parameters or integration of the rate equation. With the tangent-slope method, the optimal number of data points used in calculating tangent slopes was found to be 9 or 11. The reliability of the Hill parameters determined with the tangent-slope method was relatively insensitive to the maximum substrate concentration over a range of SmaxS0.5 of 1.5 to 10; the optimal value was 3. Through further analysis of simulated data, it was found that slow enzyme inactivation (<4% loss during the assay), or product competitive inhibition (maximum product concentration < 30% of the inhibitor dissociation constant) does not produce serious errors in the Hill parameters. Methods are presented to detect and distinguish enzyme inactivation and product competitive inhibition. It is suggested that continuous addition methodology combined with tangent-slope analysis provides the basis for a flexible system for kinetic characterization of enzymes which has wider applicability and other advantages over multicuvette or conventional progress curve methodology. A major advantage in contrast to the progress curve approach is that product accumulation and associated product effects are lowest at lower substrate concentrations.  相似文献   

2.
A simple apparatus for measuring the magnetism of magnetotactic bacteria was developed with a common laboratory spectrophotometer, which was based on measuring the change in light scattering resulting from cell alignment in a magnetic field. A multiple coils were built around the cuvette holder of the spectrophotometer to compensate geomagnetic field and to generate two mutually perpendicular magnetic fields. In addition, we defined a novel magnetism parameter, Rmag, by modifying the definition of Cmag to a normalized parameter with the culture absorbance obtained without application of magnetic field. The number of magnetosomes in each cell was determined by transmission electron microscopy to assess the relationship between the two magnetism parameters and the distribution of magnetosomes in the cells. We found that both Rmag and Cmag were linearly correlated rather with the percentage of magnetosome-containing bacteria than with the average magnetosome numbers, and Rmag exhibited a better linearity than Cmag with respect to the percentage of magnetosome-containing bacteria.  相似文献   

3.
《Biophysical journal》2022,121(7):1184-1193
Molecular motors play a central role in many biological processes, ranging from pumping blood and breathing to growth and wound healing. Through motor-catalyzed chemical reactions, these nanomachines convert the chemical free energy from ATP hydrolysis into two different forms of mechanical work. Motor enzymes perform reversible work, wrev, through an intermediate step in their catalyzed reaction cycle referred to as a working step, and they perform Fx work when they move a distance, x, against a force, F. In a powerstroke model, wrev is performed when the working step stretches a spring within a given motor enzyme. In a chemical-Fx model, wrev is performed in generating a conserved Fx potential defined external to the motor enzyme. It is difficult to find any common ground between these models even though both have been shown to account for mechanochemical measurements of motor enzymes with reasonable accuracy. Here, I show that, by changing one simple assumption in each model, the powerstroke and chemical-Fx model can be reconciled through a chemical thermodynamic model. The formal and experimental justifications for changing these assumptions are presented. The result is a unifying model for mechanochemical coupling in motor enzymes first presented by A.V. Hill in 1938 that is consistent with single-molecule structural and mechanical data.  相似文献   

4.
l-Tryptophan-2,3-dioxygenase, (EC 1.13.1.12) purified from Pseudomonas acidovorans, is inactivated on aerobic aging or on treatment with K3Fe(CN)6, but regains activity in the presence of reducing agents such as sodium ascorbate. Examination of oxidized, inactive enzyme by electron paramagnetic resonance (epr) spectroscopy has revealed the presence of high spin ferriheme (g = 6.2) and of Cu(II) (g = 2.065, g = 2.265) in the enzyme.The epr signal of Cu(II) in inactive tryptophan oxygenase is attenuated on the addition of ascorbate, whereas the high spin ferriheme signal is unaffected, indicating that the site of action of reducing agents in activating the enzyme is the enzymic copper. Quantitation of the Cu(II) signal in inactive tryptophan oxygenase by double integration accounts for 45% of the total copper.Addition of l-tryptophan to either inactive or active enzyme produces a decrease of 44 ± 5% of the epr signal of high spin ferriheme and the emergence of the epr signal of a low spin ferriheme (g1, 2, 3 = 2.66, 2.20, 1.81). Disappearance of the high spin ferriheme is hyperbolic (Hill coefficient, n = 1.02) with respect to l-tryptophan concentration, while the appearance of the low spin ferriheme is sigmoidal (Hill coefficient, n = 1.33) with respect to l-tryptophan concentration. The characteristics of the epr signal of this low spin ferriheme are intermediate between those of the signals of the hydroxides of hemoglobin and myoglobin and those in which two histidines are ligated to the ferriheme of hemoglobin. This may be the first example of the observation by epr of an allosteric parameter of an enzyme.  相似文献   

5.
NAD malic enzyme (EC 1.1.1.39), which is involved in C4 photosynthesis, was purified to electrophoretic homogeneity from leaves of Eleusine coracana and to near homogeneity from leaves of Panicum dichotomiflorum. The enzyme from each C4 species was found to have only one type of subunit by SDS polyacrylamide gel electrophoresis. The Mr of subunits of the enzme from E. coracana and P. dichotommiflorum was 63 and 61 kilodaltons, respectively. The native Mr of the enzyme from each species was determined by gel filtration to be about 500 kilodaltons, indicating that the NAD malic enzyme from C4 species is an octamer of identical subunits. The purified NAD malic enzyme from each C4 species showed similar kinetic properties with respect to concentrations of malate and NAD; each had a requirement for Mn2+ and activation by fructose- 1,6-bisphosphate (FBP) or CoA. A cooperativity with respect to Mn2+ was apparent with both enzymes. The activator (FBP) did not change the Hill value but greatly decreased K0.5 (the concentration giving half-maximal activity) for Mn2+. The enzyme from E. coracana showed a very low level of activity when NADP was used as substrate, but this activity was also stimulated by FBP. Significant differences between the enzymes from E. coracana and P. dichotomiflorum were observed in their responses to the activators and their immunochemical properties. The enzyme from E. coracana was largely dependent on the activators FBP or CoA, regardless of concentration of Mn2+. In contrast, the enzyme from P. dichotomiflorum showed significant activity in the absence of the activator, especially at high concentrations of Mn2+. Both immunodiffusion and immunoprecipitation, using antiserum raised against the purified NAD malic enzyme from E. coracana, revealed partial antigenic differences between the enzymes from E. coracana and P. dichotomiflorum. The activity of the NAD malic enzyme from Amaranthus edulis, a typical NAD malic enzyme type C4 dicot, was not inhibited by the antiserum raised against the NAD malic enzyme from E. coracana.  相似文献   

6.
The isotherm for isocitrate oxidation by potato (Solanum tuberosum L. var. Russet Burbank) mitochondria in the presence of exogenous NAD is characterized by a hyperbolic phase at isocitrate concentrations below 3 millimolar, and a sigmoid, or positively cooperative phase from approximately 3 to 30 millimolar. The two forms of isocitrate dehydrogenase were separated and characterized following the sonication of mitochondria in 15% glycerol in the absence of buffer, followed by fractionation in a density step gradient to yield inner membrane and matrix components. The membrane-associated isocitrate dehydrogenase was found to have a Hill, or cooperativity, number of 1, while the Hill number of the matrix enzyme was 2.5. Upon digitonin extraction the cooperativity number of the membrane enzyme rose to 3.5. The isocitrate Km for the membrane enzyme was calculated to be approximately 5.9 × 10−4 molar, while the S0.5 for the matrix was 6.9 × 10−4 molar. The NAD Km for both enzymes was 150 micromolar. Whereas the membrane enzyme proved indifferent to adenine nucleotides, the matrix enzyme was arguably inhibited by AMP and ADP, and inhibited some 25% by 5 millimolar ATP. Both enzymes were negatively responsive to the mole fraction of NADH, the membrane enzyme being 50% inhibited at a mole fraction of 0.26, and the matrix enzyme by a mole fraction of 0.32. The suggestion is offered that the enzymes in question constitute two forms of a single enzyme, one peripherally associated with the inner membrane, and one soluble in the matrix. It is proposed that a degree of regulation may be achieved by the apportionment of the enzyme between the bound and free forms.  相似文献   

7.
Based on the absorbance change of indicators with the concentration of hydrogen ion released from an enzyme-catalyzed reaction, a convenient colorimetric method was established for the assay of acidic phospholipase A2 and glycogen phosphorylase b. Brilliant yellow and bromothymol blue were chosen as indicators for assays of acidic phospholipase A2 and glycogen phosphorylase b by following the absorbance changes at 495 and 615 nm, respectively. The method is simple, sample-saving, sensitive and valid for a wide range of enzyme concentrations. It can be extended for assaying other enzymes catalyzing reactions with hydrogen ion concentration changes.  相似文献   

8.
《Experimental mycology》1986,10(4):289-293
We have determined the effects of KCl, ZnCl2, and MgCl2 on kinetic parameters of glucose-6-phosphate dehydrogenases from the bacteriaEscherichia coli, Bacillus stearothermophilus, andLeuconostoc mesenteroides, from the fungiAspergillus parasiticus, Alternaria alternata, Aphanomyces astaci, Saccharomyces cerevisiae, andTorula sp., and from the mammalRattus rattus. Each enzyme was stimulated by increasing ionic strength (KCl) and by MgCl2. One bacterial enzyme, fromE. coli, three fungal enzymes, fromA. parasiticus, S. cerevisiae, andTorula sp., and the rat liver enzyme were inhibited by ZnCl2. These data are discussed in light of our previous proposal that Zn2+ inhibition of this enzyme may stimulate versicolorin synthesis byA. parasiticus.  相似文献   

9.
The dynamic behaviour of an open futile cycle composed of two enzymes has been investigated in the vicinity of a steady-state. A necessary condition required for damped or sustained oscillations of the system is that enzyme E2, which controls recycling of the substrate S2, be inhibited by an excess of this substrate. In order for the system to be neutrally stable and therefore to exhibit sustained oscillations, it is not necessary for antagonist enzyme E1 to be activated by its product S2. If it is enzyme E1 which is inhibited by an excess of its substrate S1, the system has a saddle point. Other conditions for stability or instability of the system have been determined. If the enzyme E1, which is not inhibited by the substrate, exhibits a slow conformational transition of the mnemonical type, this transition dramatically alters the stability behavior of the system. If the mnemonical enzyme E1 were exhibiting a positive kinetic co-operativity, decreasing the rate of the conformational transition of the mnemonical enzyme will increase the stability of the whole system and will tend to damp the oscillations in the vicinity of the steady-state. If conversely the mnemonical enzyme E1 were exhibiting a negative kinetic co-operativity, decreasing the rate of the enzyme conformational transition will decrease the stability of the system and will tend to create or amplify oscillations of the system taken as a whole. If these results may be extended to more complex metabolic cycles, involving more than two enzymes, it may be tentatively considered that positive co-operativity associated with slow transition has emerged in the course of evolution in order to limit temporal instabilities of metabolic cycles. Alternatively one may speculate that the “biological function” of negative co-operativity is to create or amplify these temporal instabilities.  相似文献   

10.
《Phytochemistry》1987,26(4):945-948
Alkyleysteine lyase (EC 4.4.1.6) was purified essentially to homogeneity from both fresh hypocotyls of 5- to 8-day-old etiolated seedlings of Acacia farnesiana and acetone powders of such hypocotyls. The enzyme from the fresh material had twice the specific activity of that from the acetone powder. Sodium dodecylsulphate gel electrophoresis showed that both enzymes were composed of a subunit of Mrca 42 000. The final enzyme solutions were quite different in their absorbance spectra. The fresh hypocotyl enzyme had an absorbance maximum at 425 nm in addition to the 280 nm protein absorbance. This maximum in the visible region is due to bound pyridoxal phosphate. The acetone powder enzyme had the same maxima and in addition peaks at 498 and 340 nm. The fresh enzyme contained 1.8 mol cofactor/mol enzyme and the acetone powder enzyme 1.0 mol/mol. The KKm for the probable natural substrate L-djenkolate was the same for both enzymes, 0.8 mM, but the Vmax for the fresh was twice that of the acetone powder enzyme. The common practice of using acetone powder preparations for starting material in enzyme purifications would appear to require some caution.  相似文献   

11.
In contrast with the ease of observing heterotropic effects in allosteric enzymes of low co-operativity, the detection of homotropic effects is often difficult. As a consequence, erroneous conclusions about the uncoupling of homotropic and heterotropic effects can result unless sensitive techniques are used for analyzing the kinetic data. Simulations of experiments as well as actual measurements on the allosteric enzyme, aspartate transcarbamoylase, of Escherichia coli and some of its modified forms, were performed in attempts to develop stringent diagnostic procedures for the detection of homotropic effects in enzymes of low co-operativity. The analyses show that direct saturation plots (velocity versus substrate concentration), double reciprocal plots, and Hill plots yield misleading results in that the co-operativity known to be present is not observed. In contrast, Eadie plots (velocity/substrate concentration versus velocity) are much more sensitive in revealing homotropic effects. Since the observed co-operativity depends on both the allosteric equilibrium constant, L, and the number of active sites, n, simulations were performed on the effect of those parameters. The maxima in the Eadie plots increased as L was lowered and conversely the maxima decreased as n was reduced. These changes were confirmed with a mutant aspartate transcarbamoylase which had the same specific activity as the wild-type enzyme and a lower value of L, and also with a hybrid enzyme containing fewer active sites and the same L value. Analogous experiments on nitrated aspartate transcarbamoylase derivatives of decreasing activity showed that Eadie plots were of value in distinguishing between the changes in L and n values resulting from the inactivation. Data from the literature were analyzed in the form of Eadie plots and in all cases homotropic effects were readily detectable for aspartate transcarbamoylase derivatives previously claimed to be devoid of co-operativity.  相似文献   

12.
Electron transport activity and absorbance changes associated with P700 were investigated in a mutant strain of Chlamydomonas reinhardi with impaired photosynthesis. This mutant strain, ac-8oa, cannot reduce NADP with electrons from either water or dye and ascorbate, but it has considerable Hill activity. The mutant strain shows none of the absorbance changes characteristic of P700. Although unable to carry out cyclic photosynthetic phosphorylation, ac-8oa is able to synthesize ATP when ferricyanide is provided as an electron acceptor.

These observations lead to the conclusion that a site for the coupling of photosynthetic phosphorylation with electron transport must exist between the 2 photochemical systems.

  相似文献   

13.
The calculation of the first four moments of saturation functions is proposed as a method to describe the properties of enzymes or receptors models. The values of these moments in the case of the Langmuir or Michaelis-Menten equation and the Hill equation are reviewed. They have been calculated for the second degree Adair equation and in the case of binding site heterogeneity. A method for generalization to cases of greater complexity is also proposed. The advantage of this method over the classical ones—graphical representations and derivation of coefficients like nH, [L]0.9[L]0.1…—is essentially that the moments are defined by one single value independently of any particular model for the whole of the saturation curve.  相似文献   

14.
A repressible extracellular alkaline phosphatase (with activity increasing steadily even up to pH 10.5) was purified from cultures of the wild-type strain 74A of Neurospora crassa, after growth on acetate and under limiting amounts of inorganic phosphate for 72 hr at 30°. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulphate (SDS). The MW was ca 172 000 and 82 000 as determined by Sephadex G-200 gel filtration and SDS-PAGE, respectively. The enzyme contained 23.6% neutral sugars, cations were not required for activity, and it was not inactivated by 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) at pH 8. Kinetic data showed Michaelian behaviour for the enzymatic hydrolysis of 4-nitrophenyl disodium orthophosphate (PNP-P) at pH 9 (the Km value and Hill coefficient were 2.2 × 10?4 M and 0.95, respectively). It was also shown that, at pH 9, the apparent number of Pi bound per dimer molecule equalled one, with a Ki value of 7.0 × 10?4 M. The secreted enzyme showed half-lives of 23.5, 49.0 and 23.5 min at, pH 5.4, 7.4 and 9.0, respectively, after thermal inactivation at 60°. At pH 5.4, the half-life value was quite similar, while the others were respectively 2 and 4 times greater than those previously described for the repressible alkaline phosphatase retained by the mycelium at pH 5.6 or secreted by ‘slime’ cells.  相似文献   

15.
A new simple procedure has been developed for the purification of plasma membranes from rabbit kidney microsomes which yields a three- to fourfold increase in the specific activity of Na+-K+-adenosine triphosphatase (ATPase). The procedure differs from previous methods with deoxycholate or other detergents and does not change the molecular activity of the ATPase. The K+-dependent p-nitrophenylphosphatase activity of the native Na+-K+-ATPase is controlled more effectively by Mg2+ in the presence of K+ at concentrations higher than that of Mg2+, and by K+ in the presence of Mg2+ at concentrations higher than that of K+. The enzyme in its Mg2+-regulating state, which shows K+-saturation curves with a Hill coefficient of 1, is less sensitive to ouabain (I0.5 = 90 μM) and corresponds to the enzyme conformation reported previously which is inhibited by the concurrent presence of Na+ and ATP or of Na+ and oligomycin (I0.5 is the midpoint of the saturation curve). The enzyme in its K+-regulating state, which shows K+-saturation curves with a Hill coefficient of 2, is more sensitive to ouabain inhibition (I05 = 8 μM) and corresponds to the enzyme conformation which is stimulated by the concurrent presence of Na+ and ATP or of Na+ and oligomycin. There appear to be two conformations of the enzyme that are regulated by Mg2+ binding on the inhibitory sites of the enzyme.  相似文献   

16.
Hydrolysis of an artificial fluorogenic substrate, 4-methylumbelliferyl-β-N-acetylglucosaminide, has been studied in a monoculture predator-prey system with either a flagellate (Bodo saltans) or a ciliate (Cyclidium sp.) fed upon pure bacterial culture (Aeromonas hydrophila or Alcaligenes xylosoxidans). Aeromonas hydrophila produced a low-affinity β-N-acetylglucosaminidase-like enzyme (Km, 100 μmol liter-1) but Alcaligenes xylosoxidans did not. Inoculation of both bacterial strains with bacterivorous protozoa induced the occurrence of another, high-affinity, β-N-acetylglucosaminidase-like enzyme (Km, <0.5 μmol liter-1). The latter enzyme showed significant, close correlations with total grazing rates of both B. saltans (r2 = 0.96) and Cyclidium sp. (r2 = 0.89) estimated by using uptake of fluorescently labelled bacteria. Further significant correlations between several protozoan parameters and kinetic parameters of this enzyme suggest its likely protozoan origin. If both types of enzyme occurred together, they could be satisfactorily distinguished by using kinetic data analysis. Hence, measurements of β-N-acetylglucosaminidase-like activities might be promising to use to improve estimations of protozoan bacterivory.  相似文献   

17.
Yeast has at least three partially characterized aldehyde dehydrogenases. Previous studies by gene disrupted in our laboratory revealed that the Saccharomyces cerevisiae cytosol ALDH1 played an important role in ethanol metabolism as did the class 2 mitochondrial enzyme. To date, few mutagenesis studies have been performed with the yeast enzymes. An important human variant of ALDH is one found in Asian People. In it, the glutamate at position 487 is replaced by a lysine. This glutamate interacts with an arginine (475) that is located in the subunit that makes up the dimer pair in the tetrameric enzyme. Sequence alignment shows that these two residues are located at positions 492 and 480, respectively, in the yeast class 1 enzyme which shares just 45% sequence identity with the human enzymes. Mutating glutamate 492 to lysine produced an enzyme with altered kinetic properties when compared to the wild-type glutamate-enzyme. The Km for NADP of E492K increased to nearly 3600 μM compare to 40 μM for wild-type enzyme. The specific activity decreased more than 10-fold with respect to the recombinant wild-type yeast enzyme. Moreover, substituting a glutamine for a glutamate was not detrimental in that the E492Q had wild-type-like Km for NADP and Vmax. These properties were similar to the changes found with the human class 2 E487K mutant form. Further, mutating arginine 480 to glutamine produced an enzyme that exhibited positive cooperativity in NADP binding. The Km for NADP increased 11-fold with a Hill coefficient of 1.6. The NADP-dependent activity of R480Q mutant was 60% of wild-type enzyme. Again, these results are very similar to what we recently showed to occur with the human enzyme [Biochemistry 39 (2000) 5295–5302]. These findings show that the even though the glutamate and arginine residues are not conserved, similar changes occur in both the human and the yeast enzyme when either is mutated.  相似文献   

18.
A cold-adapted protease subtilisin was successfully isolated by evolutionary engineering based on sequential in vitro random mutagenesis and an improved method of screening (H. Kano, S. Taguchi, and H. Momose, Appl. Microbiol. Biotechnol. 47:46–51, 1997). The mutant subtilisin, termed m-63, exhibited a catalytic efficiency (expressed as the kcat/Km value) 100% higher than that of the wild type at 10°C when N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide was used as a synthetic substrate. This cold adaptation was achieved with three mutations, Val to Ile at position 72 (V72I), Ala to Thr at position 92 (A92T), and Gly to Asp at position 131 (G131D), and it was found that an increase in substrate affinity (i.e., a decreased Km value) was mostly responsible for the increased activity. Analysis of kinetic parameters revealed that the V72I mutation contributed negatively to the activity but that the other two mutations, A92T and G131D, overcame the negative contribution to confer the 100% increase in activity. Besides suppression of the activity-negative mutation (V72I) by A92T and G131D, suppression of structural stability was observed in measurements of activity retention at 60°C and circular dichroism spectra at 10°C.Biological systems have evolved over billions of years to perform very specific biological functions within the context of living organisms. From the evolution of natural proteins, we have learned that proteins are highly adaptable, constantly changing biomolecules. Accordingly, we can explore the functions of protein molecules free from the constraints of a living system by mimicking some of the processes of Darwinian evolution in the test tube. We have been attempting to use “evolutionary engineering” to improve enzyme proteins for practical purposes. Evolutionary engineering can be defined as a technological alternative to protein engineering for the creation of desired enzymes based on a Darwinian sequential program of mutagenesis and selection. To date, the pioneering works have concentrated on the application of evolution engineering to the isolation of thermostable enzymes (7, 16) and organic solvent-adapted enzymes (1).Cold adaptation of enzymes would be an attractive project covering a wide range of applications, e.g., food processing, washing, biosynthetic processes with volatile intermediates, and environmental bioremediation. Very recently, extensive attempts to isolate different types of cold-adapted enzymes from psychrophilic organisms have been made by Gerday and coworkers (2, 3). In contrast, we have initiated for the first time an artificial evolution program for the cold adaptation of subtilisin BPN′, a mesophilic and industrially useful alkaline serine protease. Fortunately, the tertiary structure of subtilisin has been well established, and the enzyme is a good model to which protein engineering can be applied for alteration of its properties. However, much of the theoretical basis for designing a cold-adapted subtilisin is still unclear. If we were able to obtain a variety of cold-adapted subtilisins, rich background data on the structure-function relationship of this enzyme would be of enormous value in helping to clarify the molecular mechanism of cold adaptation.For this purpose, we originally devised an evolution system for multistep random mutagenesis connected with screening of the evolved enzymes with an Escherichia coli host vector and also established a system for enzyme overproduction with a Bacillus subtilis host vector (14) to allow enzymatic analysis of the evolvants. In the present communication, we describe our improved evolution system and the isolation and characterization of a cold-adapted subtilisin which exhibits activity 100% higher than that of the wild-type enzyme at 10°C.  相似文献   

19.
The co-operativity of homotropic interactions between substrate molecules in oligomeric enzymes is analyzed in the frame of the concerted transition theory of Monod et al. (1965). A discussion of the Hill coefficient nH allows determination of the conditions for negative co-operativity (nH < 1). This phenonomenon, usually taken as indicative of a sequential mechanism (Koshland et al., 1966), can be accounted for by the concerted model when the enzyme represents a K-V or V system, i.e. when the two protomer conformational states postulated in the theory differ in their catalytic activity. However, only negative co-operativity for catalysis can be explained by the concerted model, not negative co-operativity of binding.  相似文献   

20.
1. Three bacterial isolates capable of growth on l-threonine medium only when supplemented with branched-chain amino acids, and possessing high l-threonine dehydratase activity, were examined to elucidate the catabolic route for the amino acid. 2. Growth, manometric, radiotracer and enzymic experiments indicated that l-threonine was catabolized by initial deamination to 2-oxobutyrate and thence to propionate. No evidence was obtained for the involvement of l-threonine 3-dehydrogenase or l-threonine aldolase in threonine catabolism. 3. l-Threonine dehydratase of Corynebacterium sp. F5 (N.C.I.B. 11102) was partially purified and its kinetic properties were examined. The enzyme exhibited a sigmoid kinetic response to substrate concentration. The concentration of substrate giving half the maximum velocity, [S0.5], was 40mm and the Hill coefficient (h) was 2.0. l-Isoleucine inhibited enzyme activity markedly, causing 50% inhibition at 60μm, but did not affect the Hill constant. At the fixed l-threonine concentration of 10mm, the effect of l-valine was biphasic, progressive activation occurring at concentrations up to 2mm-l-valine, but was abolished by higher concentrations. Substrate-saturation plots for the l-valine-activated enzyme exhibited normal Michaelis–Menten kinetics with a Hill coefficient (h) of 1.0. The kinetic properties of the enzyme were thus similar to those of the `biosynthetic' isoenzyme from Rhodopseudomonas spheroides rather than those of the enteric bacteria. 4. The synthesis of l-threonine dehydratase was constitutive and was not subject to multivalent repression by l-isoleucine or other branched-chain amino acids either singly or in combination. 5. The catabolism of l-threonine, apparently initiated by a `biosynthetic' l-threonine dehydratase in the isolates studied, depended on the concomitant catabolism of branched-chain amino acids. The biochemical basis of this dependence appeared to lie in the further catabolism of 2-oxobutyrate by enzymes which required branched-chain 2-oxo acids for their induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号