首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcoplasmic reticulum vesicles isolated from fast-twitch frog skeletal muscle presented two classes of binding sites for ryanodine, one of high affinity (Kd1 = 1.7 nM, Bmax1 = 3.3 pmol per mg) and a second class with lower affinity (Kd2 = 90 nM, Bmax2 = 7.0 pmol per milligram). The calcium channels present in the sarcoplasmic reticulum membranes were studied in vesicles fused into lipid bilayers. Low concentrations of ryanodine (5 to 10 nM) activated a large conductance calcium channel after a short delay (5 to 10 min). The activation, which could be elicited from conditions of high or low fractional open time, was characterized by an increase in channel fractional open time without a change in conductance. The open and closed dwell time distributions were fitted with the sum of two exponentials in the range of 4 to 800 ms. The activating effect of ryanodine was due to an increase of both open time constants and a concomitant decrease in the closed time constants. Under conditions of low fractional open time (less than 0.1), the time spent in long closed periods (greater than 800 ms) between bursts was not affected by ryanodine. Higher concentrations of ryanodine (250 nM) locked the channel in a lower conductance level (approximately 40%) with a fractional open time near unity. These results suggest that the activating effects of nanomolar concentrations of ryanodine may arise from drug binding to high affinity sites. The expression of the lower conductance state obtained with higher concentrations of ryanodine may be associated with the low affinity binding sites observed in frog sarcoplasmic reticulum.  相似文献   

2.
The kinetics of ion channels have been widely modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and kinetic rate constants connecting these states are constant. To study the gating kinetics of voltage-dependent K(+) channel in rat dorsal root ganglion neurons, K(+) channel current were recorded using cell-attached patch-clamp technique. The K(+) channel characteristic of kinetics were found to be statistically self-similar at different time scales as predicted by the fractal model. The fractal dimension D for the closed times and for the open times depend on the pipette potential. For the open and closed times of kinetic setpoint, it was found dependent on the applied pipette potential, which indicated that the ion channel gating kinetics had nonlinear kinetic properties. Thus, the open and closed durations, which had the voltage dependence of the gating of this ion channel, were well described by the fractal model.  相似文献   

3.
The alpha 1-subunit of the voltage-dependent L-type Ca2+ channel has distinct, allosterically coupled binding domains for drugs from different chemical classes (dihydropyridines, benzothiazepines, phenylalkylamines, diphenylbutylpiperidines). (-)-BM 20.1140 (ethyl-2,2-di-phenyl-4-(1-pyrrolidino)-5-(2-picolyl)- oxyvalerate) is a novel Ca2+ channel blocker which potently stimulates dihydropyridine binding (K0.5 = 2.98 nM) to brain membranes. This property is shared by (+)-cis-diltiazem, (+)-tetrandrine, fostedil and trans-diclofurime, but (-)-BM 20.1140 does not bind in a competitive manner to the sites labeled by (+)-cis-[3H]diltiazem. (+)-cis-Diltiazem and (-)-BM 20.1140 have differential effects on the rate constants of dihydropyridine binding. (+)-BM 20.1140 reverses the stimulation of the positive allosteric regulators (pA2 value for reversal of (-)-BM 20.1140 stimulation = 7.4, slope 0.72). The underlying molecular mechanism of the potentiation of dihydropyridine binding has been clarified. The K0.5 for free Ca2+ to stabilize a high affinity binding domain for dihydropyridines on purified L-type channels from rabbit skeletal muscle is 300 nM. (+)-Tetrandine (10 microM) increases the affinity 8-fold (K0.5 for free Ca2+ = 30.1 nM) and (+)-BM 20.114 (10 microM) inhibits the affinity increase (K0.5 for free Ca2+ = 251 nM). Similar results were obtained with membrane-bound Ca(2+)-channels from brain tissue which have higher affinity for free Ca2+ (K0.5 for free Ca2+ = 132 nM) and for dihydropyridines compared with skeletal muscle. It is postulated that the dihydropyridine and Ca(2+)-binding sites are interdependent on the alpha 1-subunit, that the different positive heterotropic allosteric regulators (by their differential effects on Ca2+ rate constants) optimize coordination for Ca2+ in the channel pore and, in turn, increase affinity for the dihydropyridines.  相似文献   

4.
High affinity binding sites for the calcium channel inhibitor [3H]nitrendipine have been identified in microsomes from pig coronary arteries (KD=1.6 nM; Bmax=35 fmol/mg) and in purified sarcolemma from dog heart (KD=0.11 nM; Bmax=230 fmol/mg). [3H]nitrendipine binding to coronary artery microsomes was completely inhibited by nifedipine, partially by verapamil and D600 and, surprisingly, was stimulated by d-cis-diltiazem but not by 1-cis-diltiazem, a less active isomer. Half-maximal relaxation of KCl-depolarized coronary rings occurred in a slow process at 1 nM nitrendipine or 100 nM d-cis-diltiazem. In dog trabecular strips, nitrendipine caused a negative inotropic response (ED50=1μM). These results suggest that there may be multiple binding sites for different “subclasses” of calcium channel inhibitors, and that drug binding sites may be different molecular entities from the putative calcium channels.  相似文献   

5.
A novel conus peptide ligand for K+ channels   总被引:1,自引:0,他引:1  
Voltage-gated ion channels determine the membrane excitability of cells. Although many Conus peptides that interact with voltage-gated Na(+) and Ca(2+) channels have been characterized, relatively few have been identified that interact with K(+) channels. We describe a novel Conus peptide that interacts with the Shaker K(+) channel, kappaM-conotoxin RIIIK from Conus radiatus. The peptide was chemically synthesized. Although kappaM-conotoxin RIIIK is structurally similar to the mu-conotoxins that are sodium channel blockers, it does not affect any of the sodium channels tested, but blocks Shaker K(+) channels. Studies using Shaker K(+) channel mutants with single residue substitutions reveal that the peptide interacts with the pore region of the channel. Introduction of a negative charge at residue 427 (K427D) greatly increases the affinity of the toxin, whereas the substitutions at two other residues, Phe(425) and Thr(449), drastically reduced toxin affinity. Based on the Shaker results, a teleost homolog of the Shaker K(+) channel, TSha1 was identified as a kappaM-conotoxin RIIIK target. Binding of kappaM-conotoxin RIIIK is state-dependent, with an IC(50) of 20 nm for the closed state and 60 nm at 0 mV for the open state of TSha1 channels.  相似文献   

6.
The blockage of skeletal muscle sodium channels by tetrodotoxin (TTX) and saxitoxin (STX) have been studied in CHO cells permanently expressing rat Nav1.4 channels. Tonic and use-dependent blockage were analyzed in the framework of the ion-trapped model. The tonic affinity (26.6 nM) and the maximum affinity (7.7 nM) of TTX, as well as the "on" and "off" rate constants measured in this preparation, are in remarkably good agreement with those measured for Nav1.2 expressed in frog oocytes, indicating that the structure of the toxin receptor of Nav1.4 and Nav1.2 channels are very similar and that the expression method does not have any influence on the pore properties of the sodium channel. The higher affinity of STX for the sodium channels (tonic and maximum affinity of 1.8 nM and 0.74 nM respectively) is explained as an increase on the "on" rate constant (approximately 0.03 s(-1) nM(-1)), compared to that of TTX (approximately 0.003 s(-1) nM(-1)), while the "off" rate constant is the same for both toxins (approximately 0.02 s(-1)). Estimations of the free-energy differences of the toxin-channel interaction indicate that STX is bound in a more external position than TTX. Similarly, the comparison of the toxins free energy of binding to a ion-free, Na(+)- and Ca(2+)-occupied channel, is consistent with a binding site in the selectivity filter for Ca(2+) more external than for Na(+). This data may be useful in further attempts at sodium-channel pore modeling.  相似文献   

7.
kdr and super-kdr are mutations in houseflies and other insects that confer 30- and 500-fold resistance to the pyrethroid deltamethrin. They correspond to single (L1014F) and double (L1014F+M918T) mutations in segment IIS6 and linker II(S4-S5) of Na channels. We expressed Drosophila para Na channels with and without these mutations and characterized their modification by deltamethrin. All wild-type channels can be modified by <10 nM deltamethrin, but high affinity binding requires channel opening: (a) modification is promoted more by trains of brief depolarizations than by a single long depolarization, (b) the voltage dependence of modification parallels that of channel opening, and (c) modification is promoted by toxin II from Anemonia sulcata, which slows inactivation. The mutations reduce channel opening by enhancing closed-state inactivation. In addition, these mutations reduce the affinity for open channels by 20- and 100-fold, respectively. Deltamethrin inhibits channel closing and the mutations reduce the time that channels remain open once drug has bound. The super-kdr mutations effectively reduce the number of deltamethrin binding sites per channel from two to one. Thus, the mutations reduce both the potency and efficacy of insecticide action.  相似文献   

8.
Block of cardiac sodium channels is enhanced by repetitive depolarization. It is not clear whether the changes in drug binding result from a change in affinity that is dependent on voltage or on the actual state of the channel. This question was examined in rabbit ventricular myocytes by analyzing the kinetics of block of single sodium channel currents with normal gating kinetics or channels with inactivation and deactivation slowed by pyrethrin toxins. At −20 and −40 mV, disopyramide 100 μm blocked the unmodified channel. Mean open time decreased45 and34% at −20 and −40 mV during exposure to disopyramide. Exposure of cells to the pyrethrin toxins deltamethrin or fenvalrate caused at least a tenfold increase in mean open time, and prominent tail currents could be recorded at the normal resting potential. The association rate constant of disopyramide for the normal and modified channel at −20 mV was similar, ∼10×106/m/sec. During exposure to disopyramide, changes in open and closed times and in open channel noise at −80 and −100 mV are consistent with fast block and unblocking events at these potentials. This contrasts with the slow unbinding of drug from resting channels at similar potentials. We conclude that the sodium channel state is a critical determinant of drug binding and unbinding kinetics.  相似文献   

9.
Wang SY  Nau C  Wang GK 《Biophysical journal》2000,79(3):1379-1387
Batrachotoxin (BTX) alters the gating of voltage-gated Na(+) channels and causes these channels to open persistently, whereas local anesthetics (LAs) block Na(+) conductance. The BTX and LA receptors have been mapped to several common residues in D1-S6 and D4-S6 segments of the Na(+) channel alpha-subunit. We substituted individual residues with lysine in homologous segment D3-S6 of the rat muscle mu1 Na(+) channel from F1274 to N1281 to determine whether additional residues are involved in BTX and LA binding. Two mutant channels, mu1-S1276K and mu1-L1280K, when expressed in mammalian cells, become completely resistant to 5 microM BTX during repetitive pulses. The activation and/or fast inactivation gating of these mutants is substantially different from that of wild type. These mutants also display approximately 10-20-fold reduction in bupivacaine affinity toward their inactivated state but show only approximately twofold affinity changes toward their resting state. These results demonstrate that residues mu1-S1276 and mu1-L1280 in D3-S6 are critical for both BTX and LA binding interactions. We propose that LAs interact readily with these residues from D3-S6 along with those from D1-S6 and D4-S6 in close proximity when the Na(+) channel is in its inactivated state. Implications of this state-dependent binding model for the S6 alignment are discussed.  相似文献   

10.
Charybdotoxin (CTX), a small, basic protein from scorpion venom, strongly inhibits the conduction of K ions through high-conductance, Ca2+-activated K+ channels. The interaction of CTX with Ca2+-activated K+ channels from rat skeletal muscle plasma membranes was studied by inserting single channels into uncharged planar phospholipid bilayers. CTX blocks K+ conduction by binding to the external side of the channel, with an apparent dissociation constant of approximately 10 nM at physiological ionic strength. The dwell-time distributions of both blocked and unblocked states are single-exponential. The toxin association rate varies linearly with the CTX concentration, and the dissociation rate is independent of it. CTX is competent to block both open and closed channels; the association rate is sevenfold faster for the open channel, while the dissociation rate is the same for both channel conformations. Membrane depolarization enhances the CTX dissociation rate e-fold/28 mV; if the channel's open probability is maintained constant as voltage varies, then the toxin association rate is voltage independent. Increasing the external solution ionic strength from 20 to 300 mM (with K+, Na+, or arginine+) reduces the association rate by two orders of magnitude, with little effect on the dissociation rate. We conclude that CTX binding to the Ca2+-activated K+ channel is a bimolecular process, and that the CTX interaction senses both voltage and the channel's conformational state. We further propose that a region of fixed negative charge exists near the channel's CTX-binding site.  相似文献   

11.
Magidovich E  Yifrach O 《Biochemistry》2004,43(42):13242-13247
Ion channels open and close their pore in a process called gating. On the basis of crystal structures of two voltage-independent K(+) channels, KcsA and MthK, a conformational change for gating has been proposed whereby the inner helix bends at a glycine hinge point (gating hinge) to open the pore and straightens to close it. Here we ask if a similar gating hinge conformational change underlies the mechanics of pore opening of two eukaryotic voltage-dependent K(+) channels, Shaker and BK channels. In the Shaker channel, substitution of the gating hinge glycine with alanine and several other amino acids prevents pore opening, but the ability to open is recovered if a secondary glycine is introduced at an adjacent position. A proline at the gating hinge favors the open state of the Shaker channel as if by preventing inner helix straightening. In BK channels, which have two adjacent glycine residues, opening is significantly hindered in a graded manner with single and double mutations to alanine. These results suggest that K(+) channels, whether ligand- or voltage-dependent, open when the inner helix bends at a conserved glycine gating hinge.  相似文献   

12.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

13.
Pharmacological management of cardiac arrhythmias has been a long and widely sought goal. One of the difficulties in treating arrhythmia stems, in part, from incomplete understanding of the mechanisms of drug block and how intrinsic properties of channel gating affect drug access, binding affinity, and unblock. In the last decade, a plethora of genetic information has revealed that genetics may play a critical role in determining arrhythmia susceptibility and in efficacy of pharmacological therapy. In this context, we present a theoretical approach for investigating effects of drug-channel interaction. We use as an example open-channel or inactivated-channel block by the local anesthetics mexiletine and lidocaine, respectively, of normal and DeltaKPQ mutant Na(+) channels associated with the long-QT syndrome type 3. Results show how kinetic properties of channel gating, which are affected by mutations, are important determinants of drug efficacy. Investigations of Na(+) channel blockade are conducted at multiple scales (single channel and macroscopic current) and, importantly, during the cardiac action potential (AP). Our findings suggest that channel mean open time is a primary determinant of open state blocker efficacy. Channels that remain in the open state longer, such as the DeltaKPQ mutant channels in the abnormal burst mode, are blocked preferentially by low mexiletine concentrations. AP simulations confirm that a low dose of mexiletine can remove early afterdepolarizations and restore normal repolarization without affecting the AP upstroke. The simulations also suggest that inactivation state block by lidocaine is less effective in restoring normal repolarization and adversely suppresses peak Na(+) current.  相似文献   

14.
Dehydrosoyasaponin-I (DHS-I) is a potent activator of high-conductance, calcium-activated potassium (maxi-K) channels. Interaction of DHS-I with maxi-K channels from bovine aortic smooth muscle was studied after incorporating single channels into planar lipid bilayers. Nanomolar amounts of intracellular DHS-I caused the appearance of discrete episodes of high channel open probability interrupted by periods of apparently normal activity. Statistical analysis of these periods revealed two clearly separable gating modes that likely reflect binding and unbinding of DHS-I. Kinetic analysis of durations of DHS-I-modified modes suggested DHS-I activates maxi-K channels through a high-order reaction. Average durations of DHS-I-modified modes increased with DHS-I concentration, and distributions of these mode durations contained two or more exponential components. In addition, dose-dependent increases in channel open probability from low initial values were high order with average Hill slopes of 2.4–2.9 under different conditions, suggesting at least three to four DHS-I molecules bind to maximally activate the channel. Changes in membrane potential over a 60-mV range appeared to have little effect on DHS-I binding. DHS-I modified calcium- and voltage-dependent channel gating. 100 nM DHS-I caused a threefold decrease in concentration of calcium required to half maximally open channels. DHS-I shifted the midpoint voltage for channel opening to more hyperpolarized potentials with a maximum shift of −105 mV. 100 nM DHS-I had a larger effect on voltage-dependent compared with calcium-dependent channel gating, suggesting DHS-I may differentiate these gating mechanisms. A model specifying four identical, noninteracting binding sites, where DHS-I binds to open conformations with 10–20-fold higher affinity than to closed conformations, explained changes in voltage-dependent gating and DHS-I-induced modes. This model of channel activation by DHS-I may provide a framework for understanding protein structures underlying maxi-K channel gating, and may provide a basis for understanding ligand activation of other ion channels.  相似文献   

15.
The ability of a number of calcium antagonistic drugs including nitrendipine, D600, and D890 to block contractures in single skinned (sarcolemma removed) muscle fibers of the frog Rana pipiens has been characterized. Contractures were initiated by ionic substitution, which is thought to depolarize resealed transverse tubules in this preparation. Depolarization of the transverse tubules is the physiological trigger for the release of calcium ion from the sarcoplasmic reticulum and thus of contractile protein activation. Since the transverse tubular membrane potential cannot be measured in this preparation, tension development is used as a measure of activation. Once stimulated, fibers become inactivated and do not respond to a second stimulus unless allowed to recover or reprime (Fill and Best, 1988). Fibers exposed to calcium antagonists while fully inactivated do not recover from inactivation (became blocked or paralyzed). The extent of drug-induced block was quantified by comparing the height of individual contractures. Reprimed fibers were significantly less sensitive to block by both nitrendipine (10 degrees C) and D600 (10 and 22 degrees C) than were inactivated fibers. Addition of D600 to fibers recovering from inactivation stopped further recovery, confirming preferential interaction of the drug with the inactivated state. A concerted model that assumed coupled transitions of independent drug-binding sites from the reprimed to the inactivated state adequately described the data obtained from reprimed fibers. Photoreversal of drug action left fibers inactivated even though the drug was initially added to fibers in the reprimed state. This result is consistent with the prediction from the model. The estimated KI for D600 (at 10 degrees and 22 degrees C) and for D890 (at 10 degrees C) was approximately 10 microM. The estimated KI for nitrendipine paralysis of inactivated fibers at 10 degrees C was 16 nM. The sensitivity of reprimed fibers to paralysis by D600 and D890 was similar. However, inactivated fibers were significantly less sensitive to the membrane-impermeant derivative (D890) than to the permeant species (D600), which suggests a change in the drug-binding site or its environment during the inactivation process. The enantomeric dihydropyridines (+) and (-) 202-791, reported to be calcium channel agonists and antagonists, respectively, both caused paralysis, which suggests that blockade of a transverse tubular membrane calcium flux is not the mechanism responsible for antagonist-induced paralysis. The data support a model of excitation-contraction coupling involving transverse tubular proteins that bind calcium antagonists.  相似文献   

16.
A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.  相似文献   

17.
Detailed kinetic and equilibrium studies of the binding of two radiolabeled 1,4-dihydropyridine calcium antagonists to putative calcium channels in rat brain membranes were performed. (+/-)-[3H]Nitrendipine, a racemic ligand, and (+)-[3H]isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1, 4-dihydro-2,6-dimethyl-5-methoxycarbonylpyridine-3-carboxylate (PN200-110), a pure isomer, were used and their binding properties were quantitated and compared. Analysis of equilibrium binding revealed a single high affinity component for each radioligand with the same density of binding sites for both ligands. Association rates were determined over a 60-fold range of concentration of each radioligand. For both radioligands, the pseudo-first order association time courses were biphasic with the rate of the faster component dependent on radioligand concentration and the rate of the slower component independent of both the structure of the radioligand and the concentration of the radioligand. Dissociation rates were determined after various times of association. The dissociation of the optically pure radioligand, (+)-[3H]PN200-110, was monophasic at all association times, consistent with a single bound species being present throughout association. However, (+/-)-[3H]nitrendipine dissociation was biphasic after short association times (1-10 min). The biphasic dissociation observed with (+/-)-[3H]nitrendipine is consistent with the two optical isomers binding with approximately the same association rate but having different dissociation rates. These results appear to reflect the existence of two interconvertible binding states of the putative calcium channel in the membrane, one which binds the radioligands with high affinity in a simple bimolecular reaction and one which has no detectable affinity for the ligands. This mechanism of isomerization before ligand binding has been modeled by numerical solution of the differential equations of the scheme providing estimates of the rate constants for each reaction in the scheme.  相似文献   

18.
The verapamil-type calcium antagonist, D600, and its charged quaternary derivative, D890, were used to assess the sidedness of blockade in single calcium channels reconstituted from purified transverse tubules of skeletal muscle. Spontaneous single channel openings were induced with the agonist Bay-K8644 and recordings were made in a two-chamber planar bilayer setup so that drugs could be delivered to either side of the channel. Micromolar drug addition resulted in a greater than 10-fold decrease in probability of open channel events (po) without a significant change in single channel currents. Changes in po occurred in parallel with changes in mean open time and both parameters could be titrated with a similar IC50. At pH 7.2, cis or trans D600 blocked with an IC50 of 5 microM but for D890 the IC50 was cis 3 microM and trans greater than 75 microM (cis is the intracellular-equivalent side as defined by the voltage-dependent activation). The asymmetry of D890 blockade indicates that the drug can readily gain access to the blocking site from the aqueous phase adjacent to the inner but not extracellular end of the channel.  相似文献   

19.
F Salter  A K Grover 《Cell calcium》1987,8(2):145-155
The binding of nitrendipine, a calcium channel blocking agent, to the microsomes prepared from canine small intestinal circular smooth muscle was characterized. The binding of this 1,4-dihydropyridine to the membrane was reversible, saturable and of high affinity with a dissociation constant of 0.28 nM and a maximal binding of 91 fmol/mg microsomal protein. The binding occurred with an association rate constant of 0.094 nM-1 min-1 and dissociated at the rate of 0.0498 min-1. These rate constants gave a value of 0.52 nM for the dissociation constant of the binding. The binding was inhibited in a competitive fashion by other dihydropyridines (nifedipine, nimodipine, nisoldipine, PN200-110) with inhibition constants in the range of 0.1 to 1.0 nM. The binding was also inhibited by verapamil and D-600 but only at much higher concentrations. Diltiazem increased the nitrendipine binding to the membranes. The nitrendipine binding protein was solubilized using the detergent 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS). The solubilized material bound nitrendipine with a dissociation constant of 0.51 nM giving maximal binding of 70 fmol/mg protein. The binding of the solubilized material resembled the membrane bound material in inhibition by the dihydropyridines, verapamil and D-600 and in the increase by diltiazem. Thus we have solubilized the nitrendipine binding protein without changing its binding properties substantially.  相似文献   

20.
G E Flynn  W N Zagotta 《Neuron》2001,30(3):689-698
In cyclic nucleotide-gated channels (CNG), direct binding of cyclic nucleotides in the carboxy-terminal region is allosterically coupled to opening of the pore. A CNG1 channel pore was probed using site-directed cysteine substitution to elucidate conformational changes associated with channel opening. The effects of cysteine modification on permeation suggest a structural homology between CNG and KcsA pores. We found that intersubunit disulfide bonds form spontaneously between S399C residues in the helix bundle when channels are in the closed but not in the open state. While MTSET modification of pore-lining residues was state dependent, Ag(+) modification of V391C, in the inner vestibule, occurred at the same diffusion-limited rate in both open and closed states. Our results suggest that the helix bundle undergoes a conformational change associated with gating but is not the activation gate for CNG channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号