首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fluorogenic reagent fluorescamine has been used to determine the labeling patterns of Type C spinach chloroplast membrane polypeptides. Membrane polypeptides labeled with fluorescamine were detected by scanning high resolution sodium dodecyl sulfate polyacrylamide gradient slab gels for fluorescence emission.Three membrane polypeptides show a decrease in the extent of labeling when chloroplast membranes are labeled in the light compared to when they are labeled in the dark. These polypeptides have apparent molecular weights of 32 000, 23 000 and 15 000.The decrease in labeling observed in the light is abolished or reduced by treatments which inactivate the light-generated transmembrane pH gradient. CF1-depleted chloroplasts show neither a light-activated pH gradient nor a light/dark difference in labeling of these three polypeptides. Both a light-activated pH gradient and light/dark differences in labeling are observed in CF1-depleted chloroplasts which have been treated with N,N′-dicyclohexylcarbodiimide.The same ammonium sulfate fractions of a 2% sodium cholate extract, which are believed to be enriched in the membrane-bound sector of the chloroplast ATPase (CFo) are also found to be enriched in the 32 000, 23 000 and 15 000 molecular weight polypeptides. The three polypeptides are believed to be components of CFo, and the light/dark labeling differences may indicate conformational changes within CFo. Such conformational changes may reflect a mechanism which couples light-generated proton gradients to ATP synthesis.  相似文献   

2.
3.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

4.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

5.
Cross-linking reagents have been used to link covalently adjacent subunits of solubilized spinach chloroplast coupling factor 1, which is a latent ATPase. 1,5-Difluoro-2,4-dinitrobenzene, dimethyl-3,3'-dithiobispropionimidate, and dimethylsuberimidate are able to form bridges of 3 to 11 A between amino groups, and hydrogen peroxide and the o-phenanthroline-cupric ion complex catalyze the oxidation of intrinsic sulfhydryl groups. The five individual subunit bands (alpha, beta, gamma, delta, and epsilon) and several new aggregate bands can be separated by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The same four fastest moving aggregate bands, as characterized by their mobilities, migrate more slowly than the heaviest subunit band and appear with all of the cross-linkers employed. The subunit composition of the aggregate bands has been determined through the use of the reversible cross-linkers, dimethyldithiobispropionimidate, (o-phenanthroline)2Cu(II), and H2O2, and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis in which aggregates are separated in the first dimension, the disulfide cross-links are cleaved, and the individual subunits present in the aggregates are separated in the second dimension. The subunits are detected by Coomassie brilliant blue staining and by labeling some of the sulfhydryl groups of the gamma and epsilon subunits with radioactive N-ethylmaleimide. The results obtained indicate that the alpha and beta subunits can cross-link directly with each of the other subunits, that two beta subunits are adjacent, and that gamma epsilon, gamma epsilon 2, alpha delta, and beta delta aggregates are present. A minimal subunit stoichiometry consistent with these results is alpha 2 beta 2 gamma delta epsilon 2. A possible structural model of the coupling factor is derived from the data. Similar, but less extensive, experiments have been carried out with the heat-activated coupling factor (which is an ATPase); no differences in the spatial arrangement of subunits are detected from the two-dimensional gel electrophoresis analysis of the cross-linked aggregates.  相似文献   

6.
7.
Interaction between F(1)-ATPase activity stimulating oxyanions and noncatalytic sites of coupling factor CF(1) was studied. Carbonate, borate and sulfite anions were shown to inhibit tight binding of [14C]ATP and [14C]ADP to CF(1) noncatalytic sites. The demonstrated change of their inhibitory efficiency in carbonate-borate-sulfite order coincides with the previously found change in efficiency of these anions as stimulators of CF(1)-ATPase activity [Biochemistry (Mosc.) 43 (1978) 1206-1211]. Inhibition of tight nucleotide binding to noncatalytic sites was accompanied by stimulation of nucleotide binding to catalytic sites. This suggests that stimulation of CF(1)-ATPase activity is caused by interaction between oxyanions and noncatalytic sites. A most efficient stimulator of CF(1)-ATPase activity, sulfite oxyanion, appeared to be a competitive inhibitor with respect to ATP and a partial noncompetitive inhibitor with respect to ADP. The inhibition weakened with increasing time of CF(1) incubation with sulfite and nucleotides. Sulfite is believed to inhibit fast reversible interaction between nucleotides and noncatalytic sites and to produce no effect on subsequent tight binding of nucleotides. A possible mechanism of the oxyanion-stimulating effect is discussed.  相似文献   

8.
9.
The possible effects of altered nuclear complement size on the poiypeptide composition and photochemical activity of chloroplasts in haploid, diploid, and tetraploid cells, of Ricinus communis L. have been evaluated. The electron transport capacity in isolated chloroplasts decreases with the increase in nuclear genome size. Both Photosystem II (DCPIP reduction) and Photosystem 1 oxygen uptake (TMPD to methyl viologen) activities were lower in plastid preparations from tetraploid individuals than in diploid and haploid cell preparations. Photosynthetic O2-evolution and CO2-fixation rates in leaf tissue from euploid individuals were also found to decrease with the increase in size of the nuclear genome. Specific activity levels of RuBP-carboxylase were observed to increase with ploidy. Electrophoretic examination of the poiypeptide composition of thylakoid membranes from haploid, diploid, and tetraploid celis revealed no difference in the relative proportions of the constituent polypeptides of these membranes. The regulation of chloroplast development and the basis for altered plastid function in the presence of altered nuclear genome size are discussed.  相似文献   

10.
11.
12.
13.
1. Divalent antibodies against chloroplast coupling factor 1 inhibited the factor ATPase, ATP synthesis, hydrolysis and Pi-ATP exchange in chloroplasts. These antibodies also inhibited coupled electron flow rates but not the basal or uncoupled rates. 2. Several types of non-precipitating, modified antibodies prepared from the original antibody preparation strongly inhibited the ATPase and Pi-ATP exchange reaction but had little effect on ATP formation. 3. It is suggested that the inhibition of ATP synthesis by the divalent antibodies is probably due to an indirect blocking of the active site, while the inhibition of ATP-utilizing reactions by the modified antibodies is related to their effect on the transfer of ATP from a non-catalytic to a catalytic site on coupling factor 1, via an energy-dependent conformational change.  相似文献   

14.
15.
16.
The interaction of tentoxin [cyclo-(-L-leucyl-N-methyl-(Z)-dehydrophenylalanyl-glycyl-N-methyl-L-alanyl-)] with solubilized lettuce chloroplast coupling factor 1 was characterized by direct binding studies, measurement of the time course of ATPase inhibition, and steady-state enzyme kinetics. Neither substrates, products or Ca2+ competed with the tentoxin binding site, nor did they induce any large change in tentoxin affinity. The inhibition of lettuce chloroplast coupling factor 1 ATPase was found to be the time dependent, and at equilibrium the affinities estimated by equilibrium ultrafiltration and enzyme inhibition were similar (1.8 . 10(8) M-1). The steady-state kinetics best fit an uncompetitive pattern suggesting that the inhibited steps follow an irreversible step occurring after ATP binding.  相似文献   

17.
Four tight nucleotide binding sites of chloroplast coupling factor 1.   总被引:1,自引:0,他引:1  
We have examined the properties of the four tight nucleotide binding sites of reductively activated chloroplast coupling factor 1. Tight sites are here defined as those which retain bound nucleotides after passage of the chloroplast coupling factor 1 through Sephadex gel filtration centrifuge columns. Two of the sites, here called sites 4 and 5, have not been characterized in detail before. Site 4 has properties similar to those of site 1. It binds to ADP, ATP, and adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) tightly in the presence or absence of Mg2+. Bound ADP exchanges rapidly with medium ADP, but rapid exchange with ATP or AMP-PNP requires Mg2+. Site 4 may slowly hydrolyze bound ATP in the absence of medium nucleotides. Site 5 has properties similar to those of site 2. Tight binding of ATP and AMP-PNP requires Mg2+, but Mg29+)-ADP is not tightly bound. Site 5 does not hydrolyze bound ATP in the absence of medium nucleotides. Complete filling of all four tight nucleotide binding sites requires about one millimolar nucleotide, suggesting that low affinity binding sites are converted to tight binding via a nucleotide binding-induced conformational change.  相似文献   

18.
19.
W D Frasch  B R Selman 《Biochemistry》1982,21(15):3636-3643
The reaction mechanism and substrate specificity of soluble chloroplast coupling factor 1 (CF1) from spinach were determined by using the purified isomers of chromium-nucleotide complexes either as substrates for the enzyme or as inhibitors of the Ca2+-dependent ATPase activity. The isolation of CrADP( [32P]Pi) formed upon the addition of the enzyme to [32P]Pi and lambda-bidentate CrADP and the observation that the lambda-bidentate CrADP epimer was 20-fold more effective in inhibiting the Ca2+-dependent ATPase activity than was the delta epimer suggest that the substrate of phosphorylation catalyzed by CF1 is the lambda-bidentate metal ADP epimer. Tridentate CrATP was hydrolyzed by soluble CF1 to CrADP(Pi) at an initial rate of 3.2 mumol (mg of CF1)-1 min-1, indicating that the tridentate metal ATP is the substrate for ATP hydrolysis. From these results a mechanism for the phosphorylation of ADP catalyzed by coupling factor 1 is proposed whereby the bidentate metal ADP isomer associates with the enzyme, phosphate inserts into the coordination sphere of the metal, and the oxygen of the beta-phosphate of ADP attacks the inorganic phosphate by an SN2 type reaction. The resulting product is the tridentate ATP ligand.  相似文献   

20.
1. The effect of energy transfer inhibitors on energy-dependent exchange of tightly bound adenine nucleotides with washed, broken spinach thylakoids has been studied. Energy transfer inhibitors that inhibit the ATPase activity of soluble chloroplast coupling factor 1 (CF1) (e.g. phloridzin and tentoxin) do not inhibit energy-dependent adenine nucleotide exchange. Energy transfer inhibitors that block proton flux through the hydrophobic protein proton channel (CF0) (e.g. dicyclohexylcarbodiimide and triphenyltin chloride) also block light-dependent adenine nucleotide exchange. 2. Tentoxin, at relatively high concentrations, stimulates an energy-independent exchange of adenosine diphosphate. 3. High concentrations of tentoxin elicit a Ca2+-dependent ATPase activity with soluble CF1, but has no effect on the Ca2+-dependent ATPase activity of membrane-bound CF1. 4. The trypsin-activated, Ca2+-dependent, membrane-bound ATPase is not affected by high concentrations of tentoxin, whereas the dithiothreitol-activated, Mg2+-dependent ATPase is markedly inhibited. 5. The reconstitution of chloroplasts, partially depleted in CF1, with soluble CF1 is correlated with the loss of tentoxin-induced, Ca2+-dependent ATPase activity associated with soluble CF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号