首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chaperone homologs RAC (ribosome-associated complex) and Ssb1/2p are anchored to ribosomes; Ssb1/2p directly interacts with nascent polypeptides. The absence of RAC or Ssb1/2p results in a similar set of phenotypes, including hypersensitivity against the aminoglycoside paromomycin, which binds to the small ribosomal subunit and compromises the fidelity of translation. In order to understand this phenomenon we measured the frequency of translation termination and misincorporation in vivo and in vitro with a novel reporter system. Translational fidelity was impaired in the absence of functional RAC or Ssb1/2p, and the effect was further enhanced by paromomycin. The mutant strains suffered primarily from a defect in translation termination, while misincorporation was compromised to a lesser extent. Consistently, a low level of soluble translation termination factor Sup35p enhanced growth defects in the mutant strains. Based on the combined data we conclude that RAC and Ssb1/2p are crucial in maintaining translational fidelity beyond their postulated role as chaperones for nascent polypeptides.  相似文献   

2.
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a “phenotypic mirror” of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.  相似文献   

3.
The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3′ contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3′ stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3′ nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3′ nucleotides. Moreover, the efficiency of translation termination in weak 3′ contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3′ nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.  相似文献   

4.
Whether errors in protein synthesis play a role in aging has been a subject of intense debate. It has been suggested that rare mistakes in protein synthesis in young organisms may result in errors in the protein synthesis machinery, eventually leading to an increasing cascade of errors as organisms age. Studies that followed generally failed to identify a dramatic increase in translation errors with aging. However, whether translation fidelity plays a role in aging remained an open question. To address this issue, we examined the relationship between translation fidelity and maximum lifespan across 17 rodent species with diverse lifespans. To measure translation fidelity, we utilized sensitive luciferase‐based reporter constructs with mutations in an amino acid residue critical to luciferase activity, wherein misincorporation of amino acids at this mutated codon re‐activated the luciferase. The frequency of amino acid misincorporation at the first and second codon positions showed strong negative correlation with maximum lifespan. This correlation remained significant after phylogenetic correction, indicating that translation fidelity coevolves with longevity. These results give new life to the role of protein synthesis errors in aging: Although the error rate may not significantly change with age, the basal rate of translation errors is important in defining lifespan across mammals.  相似文献   

5.
6.
7.
Estimates of missense error rates (misreading) during protein synthesis vary from 10(-3) to 10(-4) per codon. The experiments reporting these rates have measured several distinct errors using several methods and reporter systems. Variation in reported rates may reflect real differences in rates among the errors tested or in sensitivity of the reporter systems. To develop a more accurate understanding of the range of error rates, we developed a system to quantify the frequency of every possible misreading error at a defined codon in Escherichia coli. This system uses an essential lysine in the active site of firefly luciferase. Mutations in Lys529 result in up to a 1600-fold reduction in activity, but the phenotype varies with amino acid. We hypothesized that residual activity of some of the mutant genes might result from misreading of the mutant codons by tRNA(Lys) (UUUU), the cognate tRNA for the lysine codons, AAA and AAG. Our data validate this hypothesis and reveal details about relative missense error rates of near-cognate codons. The error rates in E. coli do, in fact, vary widely. One source of variation is the effect of competition by cognate tRNAs for the mutant codons; higher error frequencies result from lower competition from low-abundance tRNAs. We also used the system to study the effect of ribosomal protein mutations known to affect error rates and the effect of error-inducing antibiotics, finding that they affect misreading on only a subset of near-cognate codons and that their effect may be less general than previously thought.  相似文献   

8.
The Upf proteins are essential for nonsense-mediated mRNA decay (NMD). They have also been implicated in the modulation of translational fidelity at viral frameshift signals and premature termination codons. How these factors function in both mRNA turnover and translational control remains unclear. In this study, mono- and bicistronic reporter systems were used in the yeast Saccharomyces cerevisae to differentiate between effects at the levels of mRNA turnover and those at the level of translation. We confirm that upfDelta mutants do not affect programmed frameshifting, and show that this is also true for mutant forms of eIF1/Sui1p. Further, bicistronic reporters did not detect defects in translational readthrough due to deletion of the UPF genes, suggesting that their function in termination is not as general a phenomenon as was previously believed. The demonstration that upf sui1 double mutants are synthetically lethal demonstrates an important functional interaction between the NMD and translation initiation pathway.  相似文献   

9.
The oxazolidinone family is a new class of synthetic antibiotics that bind to the bacterial 50S ribosomal subunit. Two members of the family, linezolid and XA043, were examined for their effects on translational fidelity using a lacZ reporter gene in vivo. Both promoted highly significant frameshifting and nonsense suppression. Chloramphenicol, a peptidyl transferase inhibitor, affected translational fidelity in a similar fashion. Neither the oxazolidinones nor chloramphenicol stimulated misincorporation of amino acid residues at position 461 in the lacZ gene. In contrast, the aminoglycosides gentamicin and paromomycin, which interact with the decoding region of the 30S subunit, caused significant misincorporation but only modest increases in frameshifting or stop codon readthrough of the lacZ gene. We conclude that effects on translational fidelity may play a significant role in the mechanism of action of the oxazolidinones.  相似文献   

10.
The elongation step of translation is a key contributor to the abundance, folding and quality of proteins and to the stability of mRNA. However, control over translation elongation has not been thoroughly investigated. In this study, a Renilla–firefly luciferase fusion reporter system was further developed to investigate the in vitro elongation rate and processivity of ribosomes independent of the initiation and termination steps. The reporter mRNA was constructed to contain a single ORF encoding in-frame Renilla luciferase, a specific domain moiety and firefly luciferase. Such a reporter structure enables the quantitative and individual evaluation of the synthesis of a specific domain. As a proof of principle, the synthesis of three protein domains of different lengths and structures was analyzed. Using a cell-free translation assay, both the elongation rate and processivity of ribosomes were shown to vary depending on the domain synthesized. Additionally, a stalling sequence consisting of ten rare arginine codons notably reduced the elongation rate and the processivity of the ribosomes. All these results are consistent with the previously known dynamics of elongation in vivo. Overall, the methodology presented in this report provides a framework for studying aspects that contribute to the elongation step of translation.  相似文献   

11.
Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.

A cell-based screen identifies a small molecule, Y-320, that potently enhances readthrough of premature termination codons by the aminoglycoside G418. Y-320 increases cellular protein levels and protein synthesis, and appears to act via an autocrine chemokine signaling pathway.  相似文献   

12.
Early studies provided evidence that peptide-chain release factors (RFs) bind to both ribosomal subunits and trigger translation termination. Although many ribosomal proteins have been implicated in termination, very few data present direct biochemical evidence for the involvement of rRNA. Particularly absent is direct evidence for a role of a large subunit rRNA in RF binding. Previously we demonstrated in vitro that mutations in Escherichia coli rRNAs, known to cause nonsense codon readthrough in vivo, reduce the efficiency of RF2-driven catalysis of peptidyl-tRNA hydrolysis. This reduction was consistent with the idea that in vivo defective termination at the mutant ribosomes contributes to the readthrough. Nevertheless, other explanations were also possible, because still missing was essential biochemical evidence for that idea, namely, decrease in productive association of RFs with the mutant ribosomes. Here we present such evidence using a new realistic in vitro termination assay. This study directly supports in vivo involvement in termination of conserved rRNA regions that also participate in other translational events. Furthermore, this study provides the first strong evidence for involvement of large subunit rRNA in RF binding, indicating that the same rRNA region interacts with factors that determine both elongation and termination of translation.  相似文献   

13.
The process of translation termination in eukaryotes has been monitored by different types of assays, each with its own merits. We have developed an in vivo system where the reporter protein is secreted from the cells in culture thus enabling continuous monitoring of translation termination activity by simple sampling of the cell culture media. Using this system, cell cultures can be challenged with various stimuli during growth and the cellular responses on the translational level can be investigated in vivo as well as in vitro. Sampling is rapid, easy, and non-destructive to the cells, which enables measurement of translational fidelity in real time during time-course experiments. In particular with this system it is possible to assess very low levels of stop codon suppression. The reporter enzyme, secreted alkaline phosphatase (SEAP), becomes tagged with the S-peptide when there is readthrough of a stop codon placed between the C-terminus of the SEAP and the S-peptide. The tagged SEAP is bound to a matrix and the bound SEAP activity is measured versus total SEAP activity in the medium as a reference. With this assay we have confirmed that eRF1 acts as an antisuppressor in cells transfected with a cognate suppressor tRNA as well as in control cells, where a small but significant level of readthrough (suppression) could be detected. We have also characterized suppression of the three stop codons individually, and especially UGA is prone for wobbling.  相似文献   

14.
The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3.  相似文献   

15.
The translation machinery recognizes codons that enter the ribosomal A site with remarkable accuracy to ensure that polypeptide synthesis proceeds with a minimum of errors. When a termination codon enters the A site of a eukaryotic ribosome, it is recognized by the release factor eRF1. It has been suggested that the recognition of translation termination signals in these organisms is not limited to a simple trinucleotide codon, but is instead recognized by an extended tetranucleotide termination signal comprised of the stop codon and the first nucleotide that follows. Interestingly, pharmacological agents such as aminoglycoside antibiotics can reduce the efficiency of translation termination by a mechanism that alters this ribosomal proofreading process. This leads to the misincorporation of an amino acid through the pairing of a near-cognate aminoacyl tRNA with the stop codon. To determine whether the sequence context surrounding a stop codon can influence aminoglycoside-mediated suppression of translation termination signals, we developed a series of readthrough constructs that contained different tetranucleotide termination signals, as well as differences in the three bases upstream and downstream of the stop codon. Our results demonstrate that the sequences surrounding a stop codon can play an important role in determining its susceptibility to suppression by aminoglycosides. Furthermore, these distal sequences were found to influence the level of suppression in remarkably distinct ways. These results suggest that the mRNA context influences the suppression of stop codons in response to subtle differences in the conformation of the ribosomal decoding site that result from aminoglycoside binding.  相似文献   

16.
Helix 69 of 23S rRNA forms one of the major inter-subunit bridges of the 70S ribosome and interacts with A- and P-site tRNAs and translation factors. Despite the proximity of h69 to the decoding center and tRNAs, the contribution of h69 to the tRNA selection process is unclear: previous genetic analyses have shown that h69 mutations increase frameshifting and readthrough of stop codons. However, a complete deletion of h69 does not affect the selection of cognate tRNAs in vitro. To address these discrepancies, the in vivo effects of a range of single- and multi-base h69 mutations in Escherichia coli 23S rRNA on various translation errors have been determined. While a majority of the h69 mutations examined here affected readthrough of stop codons and frameshifting, the ΔA1916 single base deletion mutation uniquely influenced missense decoding. Different h69 mutants had either increased or decreased levels of stop codon readthrough. The h69 mutations that decreased UGA readthrough also decreased UGA reading by a mutant, near-cognate tRNATrp carrying a G24A substitution in the D arm, but had far less effect on UGA reading by a suppressor tRNA with a complementary anticodon. These results suggest that h69 interactions with release factors contribute significantly to termination efficiency and that interaction with the D arm of A-site tRNA is important for discrimination between cognate and near-cognate tRNAs.  相似文献   

17.
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.  相似文献   

18.
Rsp5p is an essential yeast ubiquitin protein ligase that ubiquitinates multiple proteins involved in various processes. Recent studies indicate that ubiquitination also affects translation. Here, we show that the strain with the rsp5-13 mutation exhibits altered sensitivity to antibiotics and a slower rate of translation. Using a sensitive dual-gene reporter system, we demonstrate that stop codon readthrough efficiency is decreased in the rsp5-13 mutant, while both +1 and -1 frameshifting were unaffected. The effect of the rsp5-13 mutation on readthrough could be reversed by increased expression of ubiquitin and partially suppressed by overproduction of the elongation factor eEF1A. As assessed by fluorescence in situ hybridization, the rsp5-13 mutant cells accumulate tRNA nuclear pools, perhaps depleting tRNA from the cytoplasm. Nuclear accumulation of tRNA is observed only when rsp5-13 cells are grown in media with high amino acid content. This defect, also reversed by overproduction of the elongation factor eEF1A, may be the primary reason for altered translational decoding accuracy.  相似文献   

19.
Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3’-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5’ of the stop codon, six nucleotides 3’ of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3’-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3’-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3’-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号