首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring lignocellulose can be used as a renewable resource for the sustainable production of platform chemicals that can in turn be converted to valuable fine chemicals, polymers, and fuels. The biocatalytic conversion of lignocellulose is a very promising approach due to its high selectivity, mild conditions, and low exergy loss. However, such biocatalytic processes are still seldom applied at the industrial scale since the single conversion steps (pretreatment, hydrolysis, and fermentation) may exhibit low conversion rates, low efficiencies, or high costs. The biocatalytic conversion of lignocellulose to platform chemicals is reviewed in this work. Structures and production rates of lignocellulose are described, and platform chemicals that may be produced from lignocellulose are summarized. Biocatalytic conversion of lignocellulose is distinguished from conventional non-selective approaches. All essential conversion steps used in biocatalytic approaches (pretreatment, hydrolysis, and fermentation) are reviewed in detail. Finally, potential interactions between these conversion steps are highlighted and the advantages as well as disadvantages of integrated process configurations are elucidated. In conclusion, a comprehensive understanding of the biocatalytic conversion of lignocellulose is provided in this review.  相似文献   

2.
Leaf exudates from Aloe species, such as the Southern African Aloe ferox, are used in traditional medicines for both humans and livestock. This includes aloesin, a skin bleaching product that inhibits the synthesis of melanin. Aloesin, (a C-glycoside-5-methylchromone) can be released from aloeresin A, an ester of aloesin, through hydrolysis. The objective of the current study was to identify an enzymatic hydrolysis method for converting aloeresin A to aloesin, resulting in increased concentrations of aloesin in the aloe bitters extract. More than 70 commercially available hydrolytic enzymes were screened for the conversion of aloeresin A. An esterase (ESL001-02) from Diversa, a lipase (Novozym 388) and a protease (Aspergillus oryzae) preparation were identified during screening as being capable of providing conversion of pure aloeresin A, with the protease giving the best conversion (~100%). It was found that a contaminating enzyme in Novo 388 was responsible for the conversion of aloeresin A to aloesin. This contaminating enzyme, possibly a protease, was able to give almost complete conversion using crude aloe bitters extract, doubling the concentration of aloesin in aloe bitters extract via the hydrolysis of aloeresin A.  相似文献   

3.
To investigate the concept of a xylosidase-based process for the continuous production of xylose from arabinoxylan-containing feedstocks, a beta-xylosidase from Bacillus halodurans C-125 was immobilized and deployed in packed bed reactor (PBR). Among the several immobilization methods tested, glutaraldehyde-mediated immobilization on chitosan was the best both in terms of immobilization and activity yields (91% and 72.9%, respectively). In batch experiments the immobilized enzyme hydrolyzed wheat bran hydrolysates quite efficiently, consuming nearly all xylobiose and xylotriose after 6h. Its reusability showed only a 50% decrease of its activity after 92h. Using the chitosan-immobilized beta-xylosidase in a PBR, xylose productivity was 7.2g xylose l(-1)h(-1) and the conversion factor was 0.55 (derived from initial xylose in the substrate). The operational stability of the PBR was good, because only 25% of productivity was lost after the treatment of three batches of substrate over a 72-h period.  相似文献   

4.
Hydroxynitrile lyases (HNLs, EC 4.1.2.10, EC 4.1.2.11, EC 4.1.2.37, EC 4.1.2.39) enantioselectively catalyse the reversible addition of HCN to ketones or aldehydes, thereby forming chiral cyanohydrins, which is of special interest for industrial bio-conversions. We cloned the gene for the HNL isoenzyme 5 (PaHNL5) of the almond tree (Prunus amygdalus) and overexpressed it in the methylotrophic yeast Pichia pastoris. This opened new ways for the synthesis of (R)-cyanohydrins. The characterisation of PaHNL5 revealed high activity for the natural substrate and high enantioselectivity. For further improvement of enzyme properties such as higher activity for the conversion of unnatural substrates, a high throughput cultivation and screening system has been created, which allows the employment of P. pastoris as production host for high throughput cultivation and screening of thousands of enzyme variants. The synthesis and cleavage of 2-chlorobenzaldehyde cyanohydrin were used for the demonstration of enzyme activity of recombinant PaHNL5 with a non-natural substrate and for the development of a high throughput screening procedure.  相似文献   

5.
6.
In epoxide hydrolase from Agrobacterium radiobacter (EchA), phenylalanine 108 flanks the nucleophilic aspartate and forms part of the substrate-binding pocket. The influence of mutations at this position on the activity and enantioselectivity of the enzyme was investigated. Screening for improved enantioselectivity towards para-nitrophenyl glycidyl ether (pNPGE) using spectrophotometric progress curve analysis yielded five different mutants with 3- to 7-fold improved enantioselectivity. The increase in enantioselectivity was in most cases the result of an enhanced catalytic efficiency toward the preferred enantiomer. Several mutations at position F108 resulted in a higher activity toward cis-disubstituted meso-epoxides, which were converted to a single product enantiomer. Mutant F108C converted cis-2,3-epoxybutane to (2R,3R)-2,3-butanediol of >99% ee with a 7-fold improved activity, and mutant F108A hydrolyzed cyclohexene oxide to (1R,2R)-1,2-cyclohexanediol of >99% ee with a more than 150-fold higher activity than wild-type enzyme. It is concluded that single amino acid substitutions in the active site of epoxide hydrolase can result in enzyme variants with catalytic properties that are suitable for preparative scale production of (S)-epoxides and chiral vicinal diols in high yield and with excellent ee.  相似文献   

7.
Discovery of the CYP107Z subfamily of cytochrome P450 oxidases (CYPs) led to an alternative biocatalytic synthesis of 4'-oxo-avermectin, a key intermediate for the commercial production of the semisynthetic insecticide emamectin. However, under industrial process conditions, these wild-type CYPs showed lower yields due to side product formation. Molecular evolution employing GeneReassembly was used to improve the regiospecificity of these enzymes by a combination of random mutagenesis, protein structure-guided site-directed mutagenesis, and recombination of multiple natural and synthetic CYP107Z gene fragments. To assess the specificity of CYP mutants, a miniaturized, whole-cell biocatalytic reaction system that allowed high-throughput screening of large numbers of variants was developed. In an iterative process consisting of four successive rounds of GeneReassembly evolution, enzyme variants with significantly improved specificity for the production of 4'-oxo-avermectin were identified; these variants could be employed for a more economical industrial biocatalytic process to manufacture emamectin.  相似文献   

8.
Biocatalytic combinatorial synthesis   总被引:2,自引:0,他引:2  
Combinatorial biocatalysis, based on a principle of the combinatorial use of biosynthetic steps rather than the combinatorial use of reagents, offers a complementary approach to combinatorial chemistry, which, used individually or in connection with synthetic organic transformations, provides access to analogues not readily accessible by chemical synthetic means alone. The issues and strategies particular to this approach are discussed. Examples are given demonstrating these principles as well as the unique advantages of achieving chemo-, regio- and stereoselectivity under mild reaction conditions that biocatalytic methods offer.  相似文献   

9.
DNA生物催化功能研究进展   总被引:9,自引:2,他引:7  
近年来发现 ,不少结构特殊的DNA分子分别具有剪切RNA分子或DNA分子、T4聚核苷酸激酶样活性、DNA连接酶样活性以及催化卟啉金属离子化等多种生物催化功能 ,这些DNA分子被称为脱氧核酶或酶性DNA .它们在用作RNA和DNA工具酶、基因分析和诊断手段以及基因治疗药物等方面的潜力引人注目 .综述这些DNA分子的种类、结构特征、催化活性及应用现状和前景等方面的最新研究进展  相似文献   

10.
  1. Download : Download high-res image (208KB)
  2. Download : Download full-size image
  相似文献   

11.
Biocatalytic synthesis of vanillin   总被引:6,自引:0,他引:6  
The conversions of vanillic acid and O-benzylvanillic acid to vanillin were examined by using whole cells and enzyme preparations of Nocardia sp. strain NRRL 5646. With growing cultures, vanillic acid was decarboxylated (69% yield) to guaiacol and reduced (11% yield) to vanillyl alcohol. In resting Nocardia cells in buffer, 4-O-benzylvanillic acid was converted to the corresponding alcohol product without decarboxylation. Purified Nocardia carboxylic acid reductase, an ATP and NADPH-dependent enzyme, quantitatively reduced vanillic acid to vanillin. Structures of metabolites were established by (1)H nuclear magnetic resonance and mass spectral analyses.  相似文献   

12.
Chemical synthesis of lactones from cycloalkanes is a multi‐step process challenged by limitations in reaction efficiency (conversion and yield), atom economy (by‐products) and environmental performance. A heterologous pathway comprising novel enzymes with compatible kinetics was designed in Pseudomonas taiwanensis VLB120 enabling in‐vivo cascade for synthesizing lactones from cycloalkanes. The respective pathway included cytochrome P450 monooxygenase (CHX), cyclohexanol dehydrogenase (CDH), and cyclohexanone monooxygenase (CHXON) from Acidovorax sp. CHX100. Resting (non‐growing) cells of the recombinant host P. taiwanensis VLB120 converted cyclohexane, cyclohexanol, and cyclohexanone to ?‐caprolactone at 22, 80–100, and 170 U gCDW?1, respectively. Cyclohexane (5 mM) was completely converted with a selectivity of 65% for ?‐caprolactone formation in 2 hr without accumulation of intermediate products. Promiscuity of the whole‐cell biocatalyst gave access to analogous lactones from cyclooctane and cyclodecane. A total product concentration of 2.3 g L?1 and a total turnover number of 36,720 was achieved over 5 hr with a biocatalyst concentration of 6.8 gCDW L?1.
  相似文献   

13.
Biocatalytic Synthesis of Vanillin   总被引:3,自引:1,他引:2       下载免费PDF全文
The conversions of vanillic acid and O-benzylvanillic acid to vanillin were examined by using whole cells and enzyme preparations of Nocardia sp. strain NRRL 5646. With growing cultures, vanillic acid was decarboxylated (69% yield) to guaiacol and reduced (11% yield) to vanillyl alcohol. In resting Nocardia cells in buffer, 4-O-benzylvanillic acid was converted to the corresponding alcohol product without decarboxylation. Purified Nocardia carboxylic acid reductase, an ATP and NADPH-dependent enzyme, quantitatively reduced vanillic acid to vanillin. Structures of metabolites were established by 1H nuclear magnetic resonance and mass spectral analyses.  相似文献   

14.
The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1.  相似文献   

15.
[4S-(4I,7I,10aJ)]1-Octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester (BMS-199541-01) is a key chiral intermediate for the synthesis of Omapatrilat (BMS-186716), a new vasopeptidease inhibitor under development. By using a selective enrichment culture technique we have isolated a strain of Sphingomonas paucimobilis SC 16113, which contains a novel L-lysine epsilon-aminotransferase. This enzyme catalyzed the oxidation of the epsilon-amino group of lysine in the dipeptide dimer N(2)-[N[phenyl-methoxy)-carbonyl] L-homocysteinyl] L-lysine)1,1-disulphide (BMS-201391-01) to produce BMS-199541-01. The aminotransferase reaction required alpha-ketoglutarate as the amino acceptor. Glutamate formed during this reaction was recycled back to alpha-ketoglutarate by glutamate oxidase from Streptomyces noursei SC 6007. Fermentation processes were developed for growth of S. paucimobilis SC 16113 and S. noursei SC 6007 for the production of L-lysine epsilon-amino transferase and glutamate oxidase, respectively. L-lysine epsilon-aminotransferase was purified to homogeneity and N-terminal and internal peptides sequences of the purified protein were determined. The mol wt of L-lysine epsilon-aminotransferase is 81 000 Da and subunit size is 40 000 Da. L-lysine epsilon-aminotransferase gene (lat gene) from S. paucimobilis SC 16113 was cloned and overexpressed in Escherichia coli. Glutamate oxidase was purified to homogeneity from S. noursei SC 6003. The mol wt of glutamate oxidase is 125 000 Da and subunit size is 60 000 Da. The glutamate oxiadase gene from S. noursei SC 6003 was cloned and expressed in Streptomyces lividans. The biotransformation process was developed for the conversion of BMS-201391-01 to BMS-199541-01 by using L-lysine epsilon-aminotransferase expressed in E. coli. In the biotransformation process, for conversion of BMS-201391-01 (CBZ protecting group) to BMS-199541-01, a reaction yield of 65-70 M% was obtained depending upon reaction conditions used in the process. Phenylacetyl or phenoxyacetyl protected analogues of BMS-201391-01 also served as substrates for L-lysine epsilon-aminotransferase giving reaction yields of 70 M% for the corresponding BMS-199541-01 analogs. Two other dipeptides N-[N[(phenylmethoxy)carbonyl]-L-methionyl]-L-lysine (BMS-203528) and N,2-[S-acetyl-N-[(phenylmethoxy)carbonyl]-L-homocysteinyl]-L-lysine (BMS-204556) were also substrates for L-lysine epsilon-aminotransferase. N-alpha-protected (CBZ or BOC)-L-lysine were also oxidized by L-lysine epsilon-aminotransferase.  相似文献   

16.
Microbial reactions play key roles in biocatalysis and biodegradation. The recent genome sequencing of environmentally relevant bacteria has revealed previously unsuspected metabolic potential that could be exploited for useful purposes. For example, oxygenases and other biodegradative enzymes are benign catalysts that can be used for the production of industrially useful compounds. In conjunction with their biodegradative capacities, bacterial chemotaxis towards pollutants might contribute to the ability of bacteria to compete with other organisms in the environment and to be efficient agents for bioremediation. In addition to the bacterial biomineralization of organic pollutants, certain bacteria are also capable of immobilizing toxic heavy metals in contaminated aquifers, further illustrating the potential of microorganisms for the removal of pollutants.  相似文献   

17.
Tremendous advances in biocatalytic approaches to oligosaccharide synthesis have taken place in the past two years. The use of isolated enzymes, both glycosyltransferases and glycosidases, or engineered whole cells allows the preparation of natural oligosaccharides and analogs required for glycobiology research.  相似文献   

18.
Nucleoside derivatives are a class of compounds that have attracted intense interest in biotechnology and medicine. Use of biocatalysts opens exciting opportunities for selective synthesis of many nucleoside derivatives, and such an approach offers simplicity, exquisite selectivity and environmentally benign processes. Here we reviewed current achievements in the biocatalytic transformation of nucleoside derivatives from the literature between 2000 and 2009. This article is arranged according to the types of reactions that can be employed to transform nucleoside derivatives, which include acylation, deacylation, glycosylation, halogenation and deamination.  相似文献   

19.
The biocatalytic synthesis of fluorinated polyesters from activated diesters and fluorinated diols has been investigated. The effects of time, continuous enzyme addition, enzyme concentration, and diol chain length were studied to determine the factors that would limit chain extension, such as enzyme inactivation, enzyme specificity, the equilibrium position for the reaction, hydrolytic side reactions, and polymer precipitation. An enzyme screen demonstrated that only Novozym 435, an immobilized lipase from Candida antarctica, was effective in producing the fluorinated polyester. Molecular weight and polydispersity analyses were performed by means of gel permeation chromatography. End group analysis was accomplished through the use of matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Polymer molecular weight steadily increased and then leveled off after approximately 30 h, with a weight average molecular weight of approximately 1773. The majority of the polymer chains were terminated with either hydroxyl or vinyl groups. Polymers that were synthesized from bulk monomers had higher molecular weights, but high enzyme concentrations were required. Enzyme specificity toward shorter chain fluorinated diols appeared to be the governing factor in limiting chain growth. However, polymer molecular weight increased further (M(w) = 8094) when a fluorinated diol that contained an additional methylene spacer between the fluorine atoms and hydroxyl groups was used.  相似文献   

20.
Biocatalytic modification of natural products   总被引:3,自引:0,他引:3  
Natural products are ideal training compounds for enzymatic catalysis. New transformations have become possible on a preparative scale thanks to molecular biology, which has made many new enzymes available. Additionally, new synthetic pathways have been developed to regenerate expensive cofactors in situ and to improve enzyme selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号