首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The in vitro conversion of [14C]-indole-3-acetaldoxime (IAOX) to [14C]-indole-3-acetonitrile (IAN) by plasma membranes enriched by aqueous two-phase partitioning of Chinese cabbage ( Brassica campestris L. ssp. pekinensis cv. Granat) has been studied. The reaction product was identified by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC). A reducing agent, e.g. ascorbic acid, was needed as cofactor for the formation of IAN from IAOX. Reduction equivalents and metal ions were not involved in the conversion of IAOX to IAN. The pH optimum for the reaction was at 6.0 and the apparent Km for IAOX was 6.3 μ M . The enzyme was not inhibited by thiol reagents. The pI of the enzyme was determined to be 7.1 by isoelectric focusing (IEF). Gel permeation chromatography showed one major activity peak of 40 kDa. The reaction is considered as part of a channeling process leading from tryptophan to IAN with IAOX as an intermediate. This process is probably regulated by the indole derivatives IAOX and IAN.  相似文献   

2.
To clarify the roles of auxin-binding proteins (ABPs) in the action of auxin, soluble auxin-binding proteins were isolated from an extract of etiolated mung bean hypocotyls by affinity chromatography on 2,4-dichlorophenoxyacetic acid (2,4-D)-linked Sepharose 4B. A 39-kDa polypeptide was retained on the affinity column and eluted with a solution containing IAA or 2,4-D, but not with a solution containing benzoic acid. The protein was then purified by several column-chromatographic steps. The apparent molecular mass of the protein was estimated to be 77 kDa by gel filtration and 39 kDa by SDS-PAGE. We designated this protein ABP39. The partial amino acid sequences of ABP39, obtained after chemical cleavage by CNBr, revealed high homology with alcohol dehydrogenase (ADH; EC 1.2.1.1). While the ABP39 was not capable of oxidizing ethanol, it did catalyze the reduction of indole-3-acetaldehyde (IAAld) to indole-3-ethanol (IEt) with an apparent Km of 22 μ M. The IAAld reductase (EC 1.2.3.1) is specific for NADPH as a cofactor. The ABP39 also catalyzed the reduction of other aldehydes, such as acetaldehyde, benzaldehyde, phenylacetaldehyde and propionealdehyde. Indole-3-aldehyde was a poor substrate. The enzyme activity was inhibited by both indole-3-acetic acid and 2,4-D in a competitive manner. Therefore, the enzyme is considered to be retained on the affinity column by recognition of auxin structure.  相似文献   

3.
4.
NADPH-specific indole-3-acetaldehyde (IAAId) reductase from cucumber ( Cucumis sativus L. 相似文献   

5.
lndole-3-acetaldehyde reductase (lAAld reductase EC 1.2.3.1) from Phycomyces blakesleeanus Bgff., a 38 kDa polypeptide as determined by gel filtration, is probably localized in the cytoplasm. The formation of indole-3-ethanol (lEt) is dependent on the presence of NAD(P)H. The enzymatic reduction of IAAId shows a pH optimum between 6 and 8 and a temperature optimum at 30°C. Enzyme activity follows Michaelis Menten kinetic (Km= 200 μ M for IAAId; Km= 24 μ M for NADPH). The isoelectric point of the IAAId reductase is at pH 5.4. Phenylacetaldehyde and benzaldehyde are competitive substrates. Hydroxymeihylindole promotes the reductive IEt formation, whereas NADP+ is a non-competitive inhibitor. Changes in lAAJd reductase activity correlate with certain developmental stages of the fungus.  相似文献   

6.
Auxin conjugates play a role in the regulation of free indole-3-acetic acid (IAA) content in plants. Not much is known about the enzymes involved in either conjugate synthesis or hydrolysis. In this study we have isolated and characterized an auxin conjugate hydrolase from Chinese cabbage seedlings and investigated it during the development of both the Chinese cabbage plants and the clubroot disease. The hydrolase isolated from light- and dark-grown seedlings accepted the amide conjugates indole-3-acetic acid-alanine (IAAla), IAA-phenylalanine (IAPhe), but not IAA-aspartate (IAAsp) as substrates. We also found a substantial amount of hydrolysis of an ester conjugate (IAA-glucose, IAGlu) in our enzyme preparation. The tentative reaction product IAA was identified by HPLC and subsequent GC-MS analysis. The pH optima for the different substrates were not identical, suggesting several hydrolase isoforms. After gel filtration chromatography we found at least two peaks containing different hydrolase isoforms. The isoform, which converted IAGlu to IAA, exhibited a molecular mass of ca 63 kDa, and an isoform of ca 21 kDa converted IAAla and IAPhe. The increased free IAA content in clubroot-diseased roots of Brassicaceae can be due to either de novo synthesis or release of IAA from conjugates. To answer this question free, ester- and amide-bound IAA was measured in 24- and 30-day-old leaves and roots of healthy and Plasmodiophora brassicae-infected Chinese cabbage, and the hydrolase activity with different substrates measured in the same tissues. The amide conjugates were dramatically enhanced in infected roots, whereas free IAA was only slightly enhanced compared to the control tissue. Hydrolase activity was also enhanced in clubbed roots, but the substrate specificity differed from that found in the seedlings. Especially, IAAsp hydrolysis was induced after inoculation with P. brassicae. We conclude that different auxin conjugates can be hydrolyzed at different developmental stages or under stress.  相似文献   

7.
Indole-3-acetic acid (IAA) and indole-3-ethanol (IEt) were identified in immature seeds of Pinus sylvestris L. by combined gas chromatography-mass spectrometry. Indole-3-methanol was tentatively identified using multiple ion monitoring. Anatomical investigations of seeds, as well as measurements of free and alkali-hydrolysable IAA and IEt, were made during seed development and germination. Levels of free IAA and IEt decreased during seed development. In the later stages of seed maturation most IAA and IEt were present in alkali-hydrolysable forms. Bound IAA and bound IEt rapidly decreased during germination, while levels of free IAA and IEt increased dramatically for a short period.  相似文献   

8.
9.
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA.  相似文献   

10.
The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example—the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site ‘aromatic box’ changes the enzyme’s preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.  相似文献   

11.
Indole-3-butyric acid (IBA) greatly enhanced the rooting of an early-flowering variety of protea, Leucadendron discolor, but had very little effect on a late-flowering variety. IBA transport and metabolism were studied in both varieties after incubating the cuttings in 3H-IBA. More of the radio-label was transported to the leaves of the easy-to-root variety than the difficult-to-root (35–45% and 10%, respectively). IBA was metabolized rapidly by the cuttings of both varieties and after 24 h most of the label was in the new metabolite. However, free IBA (about 10%) was present in the cuttings during the whole period up to the time of root emergence (4 weeks). More free IBA was accumulated in the base of easy-to-root cuttings, while in the difficult-to-root variety most of the IBA was found in the leaves. The metabolite was identified tentatively as an ester conjugate with a glucose. It is possible that IBA-glucose serves as a source for free IBA, and the difference between the varieties is a consequence of the free IBA which is released, transported and accumulated in the site of a root formation.  相似文献   

12.
Levels of endogenous indole-3-acetic acid (IAA) and indole-3-acetylaspartic acid (IAAsp) were monitored in various parts of leafy cuttings of pea ( Pisum sativum L. cv. Marma) during the course of adventitious root formation. IAA and IAAsp were identified by combined gas chromatography—mass spectrometry, and the quantitations were performed by means of high performance liquid chromatography with spectrofluorometric detection. IAA levels in the root forming tissue of the stem base, the upper part of the stem base (where no roots were formed), and the shoot apex remained constant during the period studied and were similar to levels occurring in the intact seedling. A reduction of the IAA level in the root regenerating zone, achieved by removing the shoot apex, resulted in almost complete inhibition of root formation. The IAAsp level in the shoot apex also remained constant, whereas in the stem base it increased 6-fold during the first 3 days. These results show that root initiation may occur without increased IAA levels in the root regenerating zone. It is concluded that the steady-state concentration is maintained by basipetal IAA transport from the shoot apex and by conjugation of excessive IAA with aspartic acid, thereby preventing accumulation of IAA in the tissue.  相似文献   

13.
The metabolism of 14C-indole-3-acetaldoxime by Chinese cabbage hypocotyls was investigated using labelled tracer and incubation times less than 1 hr. Indole-3-acetonitrile, indole-3-methylglucosinolate and desulpho-indole-3-methylglucosinolate were the major metabolites, while IAA or other IAA precursors were not detected. The kinetics of the conversion of the aldoxime to the three metabolites was different under continuous feeding and pulse feeding conditions. The apparent Km for the conversion of the aldoxime to the nitrile and the glucosinolate were 3.3 and 5.0 μM, respectively. Tissues of Isatis tinctoria, Helianthus annuus and Zea mays also formed significant amounts of the nitrile and Zea mays formed small amounts of indole-3-acetaldehyde.  相似文献   

14.
[2′,2′-2H2]-indole-3-acetic acid ([2′,2′-2H2]IAA) was prepared in an easy and efficient manner involving base-catalyzed hydrogen/deuterium exchange. 1-O-([2′,2′-2H2]-indole-3-acetyl)-β-D-glucopyranose, [2′,2′-2H2]-2-oxoindole-3-acetic acid, and 1-O-([2′,2′-2H2]-2-oxoindole-3-acetyl)-β-D-glucopyranose were also successfully synthesized from deuterated IAA, and effectively utilized as internal standards in the quantitative analysis of IAA and its metabolites in Arabidopsis thaliana by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The use of this technique shows that these metabolites were accumulated in the roots of Arabidopsis seedlings. Dynamic changes in the metabolites of IAA were observed in response to exogenous IAA, revealing that each metabolic action was regulated differently to contribute to the IAA homeostasis in Arabidopsis.  相似文献   

15.
Auxin is thought to be an important factor in the induction of galls by galling insects. We have previously shown that both galling and nongalling insects synthesize indole-3-acetic acid (IAA) from tryptophan (Trp) via two intermediates, indole-3-acetaldoxime (IAOx) and indole-3-acetaldehyde (IAAld). In this study, we isolated an enzyme that catalyzes the last step “IAAld → IAA” from a silk-gland extract of Bombyx mori. The enzyme, designated “BmIAO1”, contains two 2Fe–2S iron–sulfur-cluster-binding domains, an FAD-binding domain, and a molybdopterin-binding domain, which are conserved in aldehyde oxidases. BmIAO1 causes the nonenzymatic conversion of Trp to IAAld and the enzymatic conversion of IAOx to IAA, suggesting that BmIAO1 alone is responsible for IAA production in B. mori. However, a detailed comparison of pure BmIAO1 and the crude silk-gland extract suggested the presence of other enzymes involved in IAA production from Trp.

Abbreviations: BA: benzoic acid; CE: collision energy; CXP: collision cell exit potential; DP: declustering potential; IAA: indole-3-acetic acid; IBI1: IAA biosynthetic inhibitor-1; IAAld: indole-3-acetaldehyde; ICA: indole-3-carboxylic acid; IAOx: indole-3-acetaldoxime; IEtOH: indole-3-ethanol; LC–MS/MS: liquid chromatography–tandem mass spectrometry; Trp: tryptophan  相似文献   


16.
While indole-3-butyric acid (IBA) has been confirmed to be an endogenous form of auxin in peas, and may occur in the shoot tip in a level higher than that of indole-3-acetic acid (IAA), the physiological significance of IBA in plants remains unclear. Recent evidence suggests that endogenous IAA may play an important role in controlling stem elongation in peas. To analyze the potential contribution of IBA to stem growth we determined the effectiveness of exogenous IBA in stimulating stem elongation in intact light-grown pea seedlings. Aqueous IBA, directly applied to the growing internodes via a cotton wick, was found to be nearly as effective as IAA in inducing stem elongation, even though the action of IBA appeared to be slower than that of IAA. Apically applied IBA was able to stimulate elongation of the subtending internodes, indicating that IBA is transported downwards in the stem tissue. The profiles of growth kinetics and distribution suggest that the basipetal transport of IBA in the intact plant stem is slower than that of IAA. Following withdrawal of an application, the residual effect of IBA in growth stimulation was markedly stronger than that of IAA, which may support the notion that IBA conjugates can be a better source of free auxin through hydrolysis than IAA conjugates. It is suggested that IBA may serve as a physiologically active form of auxin in contributing to stem elongation in intact plants.  相似文献   

17.
Indole-3-acetic acid (IAA) is found in plants in both free and conjugated forms. Within the group of conjugated IAA there is a unique class of proteins and peptides where IAA is attached directly to the polypeptide structure as a prosthetic group. The first gene, IAP1, encoding for a protein with IAA as a prosthetic group, was cloned from bean (Phaseolus vulgaris). It was shown that the expression of IAP1 as a major IAA modified protein in bean seed (PvIAP1) was correlated to a developmental period of rapid growth during seed development. Moreover, this protein underwent rapid degradation during germination. Since further molecular analysis was difficult in bean, the IAP1 gene was transformed into Arabidopsis thaliana and Medicago truncatula. Expression of the bean IAP1 gene in both plant species under the control of its native promoter targeted protein expression to the seeds. In Arabidopsis no IAA was found to be attached to PvIAP1. These results show that there is specificity to protein modification by IAA and suggests that protein conjugation may be catalyzed by species specific enzymes. Furthermore, subcellular localization showed that in Arabidopsis PvIAP1 was predominantly associated with the microsomal fraction. In addition, a related protein and several smaller peptides that are conjugated to IAA were identified in Arabidopsis. Further research on this novel class of proteins from Arabidopsis will both advance our knowledge of IAA proteins and explore aspects of auxin homeostasis that were not fully revealed by studies of free IAA and lower molecular weight conjugates.  相似文献   

18.
Pine seedlings ( Pinus sylvestris L.) were grown in a growth chamber under simulated summer conditions to an age of eight weeks after the beginning of seed germination. Single seedlings were analyzed for fresh weight, shoot and root lengths, and content of indole-3-acetic acid (IAA). The first three variables were normally distributed with standard deviations of 29%, 17% and 18%, respectively. The IAA content had a standard deviation of 39%, and this variable was not normally distributed. If this finding is of general significance, population variation must be considered when experiments involving IAA analyses are planned, and statistical methods based on a normally distributed population cannot be used to evaluate the result of such analyses unless samples of at least 20–30 individuals are analyzed. There were no correlations between the content of IAA and any of the three other variables. The content of IAA showed pronounced diurnal changes, rising from 15 ng g−1 (fresh weight) in the morning to 42 ng g−1 in the late evening. The initial rate of change was about 10% h−1. Obviously, short-term fluctuations must be checked if long-term changes in IAA content are to be studied. IAA could also be released from the acidic buffer fraction by means of alkaline hydrolysis. This "bound alkali-hydrolysable" IAA did not show short-term fluctuations.  相似文献   

19.
lndole-3-methylglucosinolate biosynthesis and metabolism in roots of Brassica napus (swede, cv. Danestone II) infected with Plasmodiophora brassicae Wor. were investigated with a pulse feeding technique developed to infiltrate intact tissue segments with labelled substrates. Infected root tissue metabolized [14C]-L-tryptophan to indole-3-methylglucosinolate, indole-3-acetonitrile, and some other lipophilic indole compounds. The incorporation of radioactivity into these compounds was significantly enhanced in infected tissue compared with control tissue. A time course study showed a high turnover of indole-3-methylglucosinolate and indole-3-acetonitrile in infected tissue. However, thioglucoside glucohydrolase activity was not changed in infected tissue compared with control tissue. Disc electrophoresis revealed the same isoenzyme in both tissues. Control and infected tissues both rapidly hydrolyzed [14C]-indole-3-acetonitrile in vivo. The possibility of a disease specific biosynthesis of indole-3-acetic acid from indole-3-methylglucosinolate as the result of a changed compartmentation is discussed.  相似文献   

20.
Recent progress in understanding the biosynthesis of the auxin, indole-3-acetic acid (IAA) in Arabidopsis thaliana is reviewed. The current situation is characterized by considerable progress in identifying, at the molecular level and in functional terms, individual reactions of several possible pathways. It is still too early to piece together a complete picture, but it becomes obvious that A. thaliana has multiple pathways of IAA biosynthesis, not all of which may operate at the same time and some only in particular physiological situations. There is growing evidence for the presence of an indoleacetamide pathway to IAA in A. thaliana, hitherto known only from certain plant-associated bacteria, among them the phytopathogen Agrobacterium tumefaciens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号