首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RecA protein is induced by the binding of DNA and ATP to become active in the hydrolysis of ATP and the cleavage of repressors. These reactions appear to depend on the structural state of the protein polymerized along the DNA, i.e. a helical coat of six RecA per turn of 95 to 100 A pitch. In support of this model of the active conformation, it was shown that high concentrations of salt also induce this helical polymerized state as well as the enzymatic activities. Here, we describe that, in vitro and with the non-hydrolyzable analogue ATP gamma S, RNA and heparin can also induce both the structural transition and the enzymatic activation of RecA to LexA cleavage in accordance with the model. RNA and heparin do not support the reaction in the presence of ATP, and they do not induce the hydrolysis of ATP either, suggesting that, in contrast to ATP gamma S, the nucleotide is not bound stably enough, and that the combined affinities of polynucleotide and ATP actually modulate the discrimination of RecA for the various possible inducers in vivo.  相似文献   

2.
3.
E A Hewat  R W Ruigrok    E DiCapua 《The EMBO journal》1991,10(9):2695-2698
The complex of recA protein with single-stranded DNA in the presence of ATP is the active species in the three enzymatic activities of recA: the initiation of strand exchange, the hydrolysis of ATP and the cleavage of repressors. Here we find by cryo-electron microscopy of unstained and unfixed samples that the helical structure of the protein coat in this complex differs slightly but significantly from the structure in the complex with double-stranded DNA. We discuss how the larger pitch of the complex with single strands (100 +/- 2 A compared with 95 +/- 2 A with double strands) could contribute to its higher enzymatic activity.  相似文献   

4.
Summary Recombination in vivo was studied in recA - heterozygous lacZ merodiploids by performing -galactosidase assays after infection with precA +. Recombination as measured by -galactosidase production was a linear function of pecA + multiplicity of infection (MOI) when the strain contained a deletion of the chromosomal recA gene. However, when the strain carried a recA1 missense allele, a higher precA + MOI was required to obtain levels of recombination comparable to the (recA) strain, and the slope of the dose-response curve increased to approximately two. It is proposed that negative complementation occurs in mixed tetramers of wild-type and missense recA polypeptides, and that in vivo recombination is a property of a multimeric form of recA protein.  相似文献   

5.
The salt-induced B- to Z-DNA conformational transition is a cooperative- and time-dependent process. From a modified form of the logistic equation which describes an equilibrium between two states we have deduced a kinetic function to quantify the degree of the B to Z transition of a synthetic (dG-dC) ⋅ (dG-dC) polynucleotide. This function was obtained by introduction of time as a variable in the logistic function so that the equilibrium constant, K, is replaced by a new constant K s , characteristic of the type of salt used. This constant is defined as the salt concentration needed to reach the B-Z transition-midpoint in the time unit. The equation fits the data obtained by circular dichroism (CD) for changes in molecular ellipticity of poly(dG-m5dC) ⋅ poly(dG-m5dC) and poly(dG-dC) ⋅ poly(dG-dC) incubated with various concentrations of mono-, di-, and trivalent salts at a constant temperature. The derived expression may be a very useful tool for studying the kinetics of the B- to Z-DNA transition. Received: 1 December 1997 / Revised version: 16 March 1998 / Accepted: 27 March 1998  相似文献   

6.
The inactive form of recA protein: the 'compact' structure.   总被引:3,自引:1,他引:3       下载免费PDF全文
When recA protein is enzymatically inactive in vitro, it adopts a more compact helical polymer form than that of the active protein polymerized onto DNA in the presence of ATP. Here we describe some aspects of this structure. By cryo-electron microscopy, a pitch of 76 A is found for both the self-polymer and the inactive complex with ssDNA. A smaller pitch of 64 A is observed in conventional electron micrographs. The contour length of complexes with ssDNA was used to estimate the binding stoichiometry in the compact complex, 6 +/- 1 nt/recA. In addition, the compact structure was observed in vivo in Escherichia coli: inclusion bodies produced upon induction of recA expression in an overproducing strain have a fibrous morphology with the structural parameters of the compact polymer.  相似文献   

7.
We have examined the exchange of recA protein between stable complexes formed with single-stranded DNA (ssDNA) and (a) other complexes and (b) a pool of free recA protein. We have also examined the relationship of ATP hydrolysis to these exchange reactions. Exchange was observed between two different recA X ssDNA complexes in the presence of ATP. Complete equilibration between two sets of complexes occurred with a t1/2 of 3-7 min under a set of conditions previously found to be optimal for recA protein-promoted DNA strand exchange. Approximately 200 ATPs were hydrolyzed for every detected migration of a recA monomer from one complex to another. This exchange occurred primarily between adjacent complexes, however. Little or no exchange was observed between recA X ssDNA complexes and the free recA protein pool, even after several hundred molecules of ATP had been hydrolyzed for every recA monomer present. ATP hydrolysis is not coupled to complete dissociation or association of recA protein from or with recA X ssDNA complexes under these conditions.  相似文献   

8.
9.
10.
BACKGROUND: Alpha crystallin is an oligomer composed of two types of subunits, alpha-A and alpha-B crystallin, and is the major constituent of human lens. The temperature induced condensation of alpha-crystallin, the main cause for eye lens opacification (cataract), is a two step-process, a nucleation followed by an aggregation phase, and a protective effect towards the aggregation is exhibited over the alpha crystallin phase transition temperature (Tc = 318.16 K). METHODS/RESULTS: To investigate if a modulation of the subunit interactions over Tc could trigger the protective mechanism towards the aggregation, we followed, by using simultaneously static and dynamic light scattering, the temperature induced condensation of alpha-crystallin. By developing a mathematical model able to uncouple the nucleation and aggregation processes, we find a previously unobserved transition in the nucleation rate constant. Its temperature dependence allows to determine fundamental structural parameters, the chemical potential (Δμ) and the interfacial tension (γ) of the aggregating phase, that characterize subunit interactions. CONCLUSIONS/GENERAL SIGNIFICANCE: The decrease of both Δμ and γ at Tc, and a relative increase in solubility, reveal a significative decrease in the strenght of alpha-crystallin subunits interactions, which protects from supramolecolar condensation in hypertermic conditions. On the whole, we suggest a general approach able to understand the structural and kinetic mechanisms involved in aggregation-related diseases and in drugs development and testing.  相似文献   

11.
recA protein promoted DNA strand exchange   总被引:9,自引:0,他引:9  
recA protein and circular single-stranded DNA form a stable complex in the presence of single-stranded DNA binding protein (SSB), in which one recA protein monomer is bound per two nucleotides of DNA. These complexes are kinetically significant intermediates in the exchange of strands between the single-stranded DNA and an homologous linear duplex. After completion of strand exchange, the recA protein remains tightly associated with the circular duplex product of the reaction and the SSB is bound to the displaced linear single strand. Upon addition of ADP, the recA protein-duplex DNA complex dissociates. RecA protein also interacts with single-stranded DNA in the absence of SSB; however, the amount of recA protein bound is substantially reduced. These findings provide direct physical evidence for the participation of SSB in the formation of the recA protein-single-stranded DNA complexes inferred earlier from kinetic analysis. Moreover, they confirm the ability of recA protein to equilibrate between bound and free forms in the absence of SSB.  相似文献   

12.
The secondary structure implications of precipitation induced by a chaotropic salt, KSCN, and a structure stabilizing salt, Na2SO4, were studied for twelve different proteins. α-helix and β-sheet content of precipitate and native structures were estimated from the analysis of amide I band Raman spectra. A statistical analysis of the estimated perturbations in the secondary structure contents indicated that the most significant event is the formation of β-sheet structures with a concomitant loss of α-helix on precipitation with KSCN. The conformational changes for each protein were also analyzed with respect to elements of primary, secondary and tertiary structure existing in the native protein; primary structure was quantified by the fractions of hydrophobic and charged amino acids, secondary structure by x-ray estimates of α-helix and β-sheet contents of native proteins and tertiary structure by the dipole moment and solvent-accessible surface area. For the KSCN precipitates, factors affecting β-sheet content included the fraction of charged amino acids in the primary sequence and the surface area. Changes in α-helix content were influenced by the initial helical content and the dipole moment. The enhanced β-sheet contents of precipitates observed in this work parallel protein structural changes occurring in other aggregative phenomena.  相似文献   

13.
Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity.  相似文献   

14.
The recA protein from Proteus mirabilis, which is homologous to the Escherichia coli protein, forms crystals in the orthorhombic space group P2(1)2(1)2(1). There are two 38,000 molecular weight subunits in the asymmetric unit and the unit cell dimensions are a = 57.5, b = 127.0 and c = 157.0 A.  相似文献   

15.
recA protein, which is essential for the recombination process in Escherichia coli, was incubated in the presence of 5′-γ-thiotriphosphate with circular plasmid pBRβG containing small single-stranded gaps. Stable complexes were formed which appear in the electron microscope as fibres with a diameter about five times that of naked DNA. Complex formation appears to be a co-operative process whereby the average rise per base-pair with respect to the fibre axis increases from 3·39 ± 0·08 Å to 5·20 ± 0·18 Å. The elongation of DNA by about 50% is compatible with an unwinding of the double helix and an intercalating mode of binding of recA and/or 5′-γ-thiotriphosphate to DNA.  相似文献   

16.
Brain amyloid composed of the approximately 40-amino-acid human beta-amyloid peptide A beta is integral to Alzheimer's disease pathology. To probe the importance of a conformational transition in Abeta during amyloid growth, we synthesized and examined the solution conformation and amyloid deposition activity of A beta congeners designed to have similar solution structures but to vary substantially in their barriers to conformational transition. Although all these peptides adopt similar solution conformations, a covalently restricted Abeta congener designed to have a very high barrier to conformational rearrangement was inactive, while a peptide designed to have a reduced barrier to conformational transition displayed an enhanced deposition rate relative to wild-type A beta. The hyperactive peptide, which is linked to a heritable A beta amyloidosis characterized by massive amyloid deposition at an early age, displayed a reduced activation barrier to deposition consistent with a larger difference in activation entropy than in activation enthalpy relative to wild-type A beta. These results suggest that in Alzheimer's disease, as in the prion diseases, a conformational transition in the depositing peptide is essential for the conversion of soluble monomer to insoluble amyloid, and alterations in the activation barrier to this transition affect amyloidogenicity and directly contribute to human disease.  相似文献   

17.
18.
The recA730 mutation results in constitutive SOS and prophage induction. We examined biochemical properties of recA730 protein in an effort to explain the constitutive activity observed in recA730 strains. We find that recA730 protein is more proficient than the wild-type recA protein in the competition with single-stranded DNA binding protein (SSB protein) for single-stranded DNA (ssDNA) binding sites. Because an increased aptitude in the competition with SSB protein has been previously reported for recA441 protein and recA803 protein, we directly compared their in vitro activities with those of recA730 protein. At low magnesium ion concentration, both ATP hydrolysis and lexA protein cleavage experiments demonstrate that these recA proteins displace SSB protein from ssDNA in a manner consistent with their in vivo repressor cleavage activity, i.e. recA730 protein > recA441 protein > recA803 protein > recAwt protein. Additionally, a correlation exists between the proficiency of the recA proteins in SSB protein displacement and their rate of association with ssDNA. We propose that an increased rate of association with ssDNA allows recA730 protein to displace SSB protein from the ssDNA that occurs naturally in Escherichia coli and thereby to become activated for the repressor cleavage that leads to SOS induction. RecA441 protein is similarly activated for repressor cleavage; however, in this case, significant SSB protein displacement occurs only at elevated temperature. At physiological magnesium ion concentration, we argue that recA803 protein and wild-type recA protein do not displace sufficient SSB protein from ssDNA to constitutively induce the SOS response.  相似文献   

19.
Wu  Hao  Cui  Yuanting  He  Chengkang  Gao  Peng  Li  Qiang  Zhang  Hexuan  Jiang  Yanli  Hu  Yingru  Wei  Xiao  Lu  Zongshi  Ma  Tianyi  Liu  Daoyan  Zhu  Zhiming 《中国科学:生命科学英文版》2020,63(11):1665-1677
Science China Life Sciences - High salt intake is a known risk factor of cardiovascular diseases. Our recent study demonstrated that long-term high salt intake impairs transient receptor potential...  相似文献   

20.
recA protein coats DNA co-operatively to form filaments approximately 100 A thick, which in the presence of ATP, and more stably so in the presence of the non-hydrolyzable analog ATP gamma S, have a helical appearance with a deep cleft in the protein coat. This protein helix follows the DNA helix, to which it imparts a new helicity of 18.5 bp per turn of 97 A pitch. Here we test the accessibility of the DNA in the complex to modification by dimethylsulfate, and find that the complexed DNA is approximately 2-fold more reactive on the major groove side than it was in B-DNA (methylation of guanine N7), while it is protected approximately 2-fold on the minor groove side (methylation of adenine N3), suggesting that the protein coats the DNA along the minor groove. Furthermore, N3 of cytosine, a residue involved in base pairing, is found exposed in complexes with single strands as it is in naked single-stranded DNA, while it remains inaccessible in complexes with double strands, suggesting that the latter is not melted at this stage of the strand exchange reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号