共查询到20条相似文献,搜索用时 0 毫秒
1.
In cardiac hypertrophy, both excessive enlargement of cardiac myocytes (CMs) and progressive fibrosis are known to occur simultaneously. To investigate the nature of interactions between ventricular CMs and cardiac fibroblasts (CFs) in these conditions, we have established a "dedifferentiated model" of adult murine CMs in coculture with CFs. In such a model, which is recognized to study cardiac cell hypertrophy in vitro, dedifferentiated CMs in culture and in coculture were characterized by immunopositive staining to ANP (atrial natriuretic peptide) and beta-myosin heavy chain (beta-MHC). The results confirm that ANP secretion by CMs was significantly increased during the cultures. The increase size of cultured CMs was significantly higher in CM/CF cocultures than in CM cultures which was also observed when CMs were cultured with fibroblast conditioned medium (FCM). In addition, fibroblast proliferation studies showed that CMs favored fibroblast adhesion and/or growth at the beginning of the coculture and fibroblast proliferation throughout the time course of the coculture. Furthermore, a significant level of interleukin-6 (IL-6) production was detected by ELISA in CM/CF cocultures. A similar higher increase was observed when CMs were cultured in the presence of FCM. These results demonstrate that CFs enhance myocyte hypertrophy and that CMs regulate fibroblast adhesion and/or proliferation, suggesting a paracrine interaction between CMs and CFs which could involve IL-6. 相似文献
2.
Boateng SY Hartman TJ Ahluwalia N Vidula H Desai TA Russell B 《American journal of physiology. Cell physiology》2003,285(1):C171-C182
Cardiac myocyte cultures usually require pharmacological intervention to prevent overproliferation of contaminating nonmyocytes. Our aim is to prevent excessive fibroblast cell proliferation without the use of cytostatins. We have produced a silicone surface with 10-µm vertical projections that we term "pegs," to which over 80% of rat neonatal cardiac fibroblasts attach within 48 h after plating. There was a 50% decrease in cell proliferation by 5 days of culture compared with flat membranes (P < 0.001) and a concomitant 60% decrease (P < 0.01) in cyclin D1 protein levels, suggesting a G1/S1 cell cycle arrest due to microtopography. Inhibition of Rho kinase with 5 or 20 µM Y-27632 reduced attachment of fibroblasts to the pegs by over 50% (P < 0.001), suggesting that this signaling pathway plays an important role in the process. Using mobile and immobile 10-µm polystyrene spheres, we show that reactive forces are important for inhibiting fibroblast cell proliferation, because mobile spheres failed to reduce cell proliferation. In primary myocyte cultures, pegs also inhibit fibroblast proliferation in the absence of cytostatins. The ratio of aminopropeptide of collagen protein from fibroblasts to myosin from myocytes was significantly reduced in cultures from pegged surfaces (P < 0.01), suggesting an increase in the proportion of myocytes on the pegged surfaces. Connexin43 protein expression was also increased, suggesting improved myocyte-myocyte interaction in the presence of pegs. We conclude that this microtextured culture system is useful for preventing proliferation of fibroblasts in myocyte cultures and may ultimately be useful for tissue engineering applications in vivo. tissue engineering; cell culture; cell cycle 相似文献
3.
The mAKAP signalosome and cardiac myocyte hypertrophy 总被引:1,自引:0,他引:1
4.
心肌细胞肥大的信号转导通路 总被引:9,自引:0,他引:9
心肌肥厚是肥大刺激诱导核内基因异常表达的结果,细胞内信号转导通路是肥大刺激与核内基因转录活化的偶联环节。然而,淡同刺激诱导的心肌肥大可能具有不同的“分子表型”,这主要取决于它们启动的信号转导通路。对心肌肥大信号转导通路的深入认识,不仅胡助于阐明心肌肥厚的细胞分子机制,而且可为药物干预防治心肌肥厚提供新思路。 相似文献
5.
Ha T Hua F Li Y Ma J Gao X Kelley J Zhao A Haddad GE Williams DL Browder IW Kao RL Li C 《American journal of physiology. Heart and circulatory physiology》2006,290(3):H985-H994
In this study, we evaluated whether blocking myeloid differentiation factor-88 (MyD88) could decrease cardiac myocyte apoptosis following pressure overload. Adenovirus expressing dominant negative MyD88 (Ad5-dnMyD88) or Ad5-green fluorescent protein (GFP) (Ad5-GFP) was transfected into rat hearts (n = 8/group) immediately followed by aortic banding for 3 wk. One group of rats (n = 8) was subjected to aortic banding for 3 wk without transfection. Sham surgical operation (n = 8) served as control. The ratios of heart weight to body weight (HW/BW) and heart weight to tibia length (HW/TL) were calculated. Cardiomyocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. Cardiac myocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and myocardial interstitial fibrosis was examined by Masson's Trichrome staining. Aortic banding significantly increased the HW/BW by 41.0% (0.44 +/- 0.013 vs. 0.31 +/- 0.008), HW/TL by 47.2% (42.7 +/- 1.30 vs. 29.0 +/- 0.69), cardiac myocyte size by 49.6%, and cardiac myocyte apoptosis by 11.5%, and myocardial fibrosis and decreased cardiac function compared with sham controls. Transfection of Ad5-dnMyD88 significantly reduced the HW/BW by 18.2% (0.36 +/- 0.006 vs. 0.44 +/- 0.013) and HW/TL by 22.3% (33.2 +/- 0.95 vs. 42.7 +/- 1.30) and decreased cardiomyocyte size by 56.8%, cardiac myocyte apoptosis by 76.2%, as well as fibrosis, and improved cardiac function compared with aortic-banded group. Our results suggest that MyD88 is an important component in the Toll-like receptor-4-mediated nuclear factor-kappaB activation pathway that contributes to the development of cardiac hypertrophy. Blockade of MyD88 significantly reduced cardiac hypertrophy, cardiac myocyte apoptosis, and improved cardiac function in vivo. 相似文献
6.
钙调神经磷酸酶在血管紧张素Ⅱ刺激的心脏成纤维细胞增殖中的作用 总被引:3,自引:0,他引:3
本研究观察了钙调神经磷酸酶(CaN)在血管坚张素Ⅱ(AngⅡ)刺激的大鼠心脏成纤维细胞增殖中的作用。在培养的大鼠心脏成纤维细胞上,应用双波长荧光 计检测Fura-2标记的细胞游离Ca^2+浓度;应用对硝基苯磷酸(PNPP)作底物测定钙调神经磷酸酶(CaN)活性;根据^3H-胸腺嘧啶掺入法评估CaN特异性抑制剂环胞素A(CsA)对AngⅡ刺激的心脏成纤维细胞DNA合成的影响。结果表明,AngⅡ(10 相似文献
7.
Elissavet Kardami 《Molecular and cellular biochemistry》1990,92(2):129-135
Summary We have examined the effect of crude cardiac tissue extracts as well as that of several growth factors and triiodothyronin (T3) on DNA synthesis of cardiac myocytes in culture. Extracts from embryonic and adult cardiac tissue stimulated DNA synthesis of myocytes. Atrial myocytes exhibited overall higher degree of stimulation than their ventricular counterparts and extracts from adult atrial tissue had the highest apparent mitogenic activity for atrial myocytes. We have shown that adult heart contains basic fibroblast growth factor (bFGF), especially in the atria [1]. Transforming growth factor (TGF) and insulin-like growth factors (IGFs) are also accumulated in cardiac tissues [2, 3]. We found that bFGF and the IGFs stimulate myocyte cell proliferation and DNA synthesis. These factors also stimulate cardiac non-muscle proliferation, especially in the presence of serum. TGF inhibited proliferation and DNA synthesis and cancelled the effect of bFGF or IGFs on the myocytes. T3 also diminished the bFGF-induced mitogenic stimulation of cardiomyocytes. Our data suggest that these factors may be involved in the regulation of cardiomyocyte proliferation in vivo.Abbreviations bFGF
basic Fibroblast Growth Factor
- BSA
Bovine Serum Albumin
- DM
Defined Medium
- Fes
Fetal calf serum
- FITC
Fluorescein
- IGF
Insulin-like Growth Factor
- IgG
Immunoglobulin
- LI
Labeling Index
- PBS
Phosphate Buffered Saline
- T3
Triiodothyronine
- TGF
Transforming Growth Factor 相似文献
8.
Helix-loop-helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction 下载免费PDF全文
Cardiomyocyte hypertrophy and extracellular matrix remodeling, primarily mediated by inflammatory cytokine-stimulated cardiac fibroblasts, are critical cellular events in cardiac pathology. The molecular components governing these processes remain nebulous, and few genes have been linked to both hypertrophy and matrix remodeling. Here we show that p8, a small stress-inducible basic helix-loop-helix protein, is required for endothelin- and alpha-adrenergic agonist-induced cardiomyocyte hypertrophy and for tumor necrosis factor-stimulated induction, in cardiac fibroblasts, of matrix metalloproteases (MMPs) 9 and 13-MMPs linked to general inflammation and to adverse ventricular remodeling in heart failure. In a stimulus-dependent manner, p8 associates with chromatin containing c-Jun and with the cardiomyocyte atrial natriuretic factor (anf) promoter and the cardiac fibroblast mmp9 and mmp13 promoters, established activator protein 1 effectors. p8 is also induced strongly in the failing human heart by a process reversed upon therapeutic intervention. Our results identify an unexpectedly broad involvement for p8 in key cellular events linked to cardiomyocyte hypertrophy and cardiac fibroblast MMP production, both of which occur in heart failure. 相似文献
9.
10.
Role of pH in fibroblast proliferation 总被引:1,自引:0,他引:1
Secondary cultures of human diploid fibroblasts were used to study the effect of pH on cellular proliferation. In nonconfluent cultures, the growth rate at pH 7.1 was similar to that at pH 7.7 regardless of serum concentration. However, the saturation density achieved at pH 7.7 at any serum concentration was always 2–4 times that achieved at pH 7.1, although the greatest differences in saturation density were observed at the higher serum levels. The results suggest that the effect of pH on saturation density is due to two factors. One, cells at pH 7.1 seem to have a greater ability to undergo contact-inhibition than at pH 7.7, independent of any serum functions; and, two, confluent cells in medium at pH 7.1 are somewhat less sensitive to growth stimulation by increasing serum concentration than are confluent cells raised in medium at pH 7.7. 相似文献
11.
Qu X Jia H Garrity DM Tompkins K Batts L Appel B Zhong TP Baldwin HS 《Developmental biology》2008,317(2):486-496
NDRG4 is a novel member of the NDRG family (N-myc downstream-regulated gene). The roles of NDRG4 in development have not previously been evaluated. We show that, during zebrafish embryonic development, ndrg4 is expressed exclusively in the embryonic heart, the central nervous system (CNS) and the sensory system. Ndrg4 knockdown in zebrafish embryos causes a marked reduction in proliferative myocytes and results in hypoplastic hearts. This growth defect is associated with cardiac phenotypes in morphogenesis and function, including abnormal heart looping, inefficient circulation and weak contractility. We reveal that ndrg4 is required for restricting the expression of versican and bmp4 to the developing atrioventricular canal. This constellation of ndrg4 cardiac defects phenocopies those seen in mutant hearts of heartstrings (hst), the tbx5 loss-of-function mutants in zebrafish. We further show that ndrg4 expression is significantly decreased in hearts with reduced tbx5 activities. Conversely, increased expression of tbx5 that is due to tbx20 knockdown leads to an increase in ndrg4 expression. Together, our studies reveal an essential role of ndrg4 in regulating proliferation and growth of cardiomyocytes, suggesting that ndrg4 may function downstream of tbx5 during heart development and growth. 相似文献
12.
Trk C receptor signaling regulates cardiac myocyte proliferation during early heart development in vivo 总被引:4,自引:0,他引:4
Lin MI Das I Schwartz GM Tsoulfas P Mikawa T Hempstead BL 《Developmental biology》2000,226(2):180-191
Neurotrophin-3 (NT-3) is a member of the neurotrophin family of growth factors, best characterized by its survival- and differentiation-inducing effects on developing neurons bearing the trk C receptor tyrosine kinase. Through analysis of NT-3 and trk C gene-targeted mice we have identified NT-3 as critically regulating cardiac septation, valvulogenesis, and conotruncal formation. Although these defects could reflect cardiac neural crest dysfunction, the expression of NT-3 and trk C by cardiac myocytes prior to neural crest migration prompted analysis of cell-autonomous actions of NT-3 on cardiac myocytes. Retroviral-mediated overexpression of truncated trk C receptor lacking kinase activity was used to inhibit activation of trk C by endogenous NT-3, during early heart development in ovo. During the first week of chicken development, expression of truncated trk C reduced myocyte clone size by more than 60% of control clones. Direct mitogenic actions of NT-3 on embryonic cardiac myocytes were demonstrated by analysis of BrdU incorporation or PCNA immunoreactivity in control and truncated trk C-expressing clones. Inhibition of trk C signaling reduced cardiac myocyte proliferation during the first week of development, but had no effect at later times. These studies demonstrate that endogenous NT-3:trk C signaling regulates cardiac myocyte proliferation during cardiac looping and the establishment of ventricular trabeculation but that myocyte proliferation becomes NT-3 independent during the second week of embryogenesis. 相似文献
13.
Davidoff AJ Davidson MB Carmody MW Davis ME Ren J 《Molecular and cellular biochemistry》2004,262(1-2):155-163
Increased protein kinase C (PKC) activity has been implicated in the pathogenesis of a number of diabetic complications, and high concentrations of glucose have been shown to increase PKC activity. The present study was designed to examine the role of PKC in diabetes-induced (and glucose-induced) cardiomyocyte dysfunction and insulin resistance (measured by glucose uptake). Adult rat ventricular myocytes were isolated from nondiabetic and type 1 diabetic animals (4-5 days post-streptozotocin treatment), and maintained overnight, with/without the nonspecific PKC inhibitor chelerythrine (CHEL = 1 microM). Myocyte mechanical properties were evaluated using a video edge-detection system. Basal and insulin-stimulated glucose uptake was measured with [3H]-2-deoxyglucose. Blunted insulin-stimulated glucose uptake was apparent in diabetic myocytes, and both mechanical dysfunctions (e.g., slowed shortening/relengthening) and insulin resistance were maintained in culture, and normalized by CHEL. Cardiomyocytes isolated from nondiabetic animals were cultured in a high concentration of glucose (HG = 25.5 mM) medium, with/without CHEL. HG myocytes exhibited slowed shortening/relengthening and impaired insulin-stimulated glucose uptake compared to myocytes cultured in normal glucose (5.5 mM), and both impairments were prevented by culturing cells in CHEL. Our data support the view that PKC activation contributes to both diabetes-induced abnormal cardiomyocyte mechanics and insulin resistance, and that elevated glucose is sufficient to induce these effects. 相似文献
14.
Sox6 regulation of cardiac myocyte development 总被引:4,自引:0,他引:4
Cohen-Barak O Yi Z Hagiwara N Monzen K Komuro I Brilliant MH 《Nucleic acids research》2003,31(20):5941-5948
15.
Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy 总被引:2,自引:0,他引:2
Class I and II histone deacetylases (HDACs) play vital roles in regulating cardiac development, morphogenesis, and hypertrophic responses. Although the roles of Hdac1 and Hdac2, class I HDACs, in cardiac hyperplasia, growth, and hypertrophic responsiveness have been reported, the role in the heart of Hdac3, another class I HDAC, has been less well explored. Here we report that myocyte-specific overexpression of Hdac3 in mice results in cardiac abnormalities at birth. Hdac3 overexpression produces thickening of ventricular myocardium, especially the interventricular septum, and reduction of both ventricular cavities in newborn hearts. Our data suggest that increased thickness of myocardium in Hdac3-transgenic (Hdac3-Tg) mice is due to increased cardiomyocyte hyperplasia without hypertrophy. Hdac3 overexpression inhibits several cyclin-dependent kinase inhibitors, including Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, and Cdkn2c. Hdac3-Tg mice did not develop cardiac hypertrophy at 3 months of age, unlike previously reported Hdac2-Tg mice. Further, Hdac3 overexpression did not augment isoproterenol-induced cardiac hypertrophy when compared with wild-type littermates. These findings identify Hdac3 as a novel regulator of cardiac myocyte proliferation during cardiac development. 相似文献
16.
Anja Bühler Bernd M. Gahr Deung-Dae Park Alberto Bertozzi Alena Boos Mohankrishna Dalvoy Alexander Pott Franz Oswald Rhett A. Kovall Bernhard Kühn Gilbert Weidinger Wolfgang Rottbauer Steffen Just 《PLoS genetics》2021,17(11)
In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart. 相似文献
17.
Saito H Patterson C Hu Z Runge MS Tipnis U Sinha M Papaconstantinou J 《American journal of physiology. Heart and circulatory physiology》2000,279(5):H2241-H2248
Interleukin (IL)-6 reportedly has negative inotropic and hypertrophic effects on the heart. Here, we describe endotoxin-induced IL-6 in the heart that has not previously been well characterized. An intraperitoneal injection of a bacterial lipopolysaccharide into C57BL/6 mice induced IL-6 mRNA in the heart more strongly than in any other tissue examined. Induction of mRNA for two proinflammatory cytokines, IL-1beta and tumor necrosis factor (TNF)-alpha, occurred rapidly before the induction of IL-6 mRNA and protein. Although stimulation of isolated rat neonatal myocardial cells with IL-1beta or TNF-alpha induced IL-6 mRNA in vitro, nonmyocardial heart cells produced higher levels of IL-6 mRNA upon stimulation with IL-1beta. In situ hybridization and immunohistochemical analyses localized the IL-6 expression primarily in nonmyocardial cells in vivo. Endotoxin-induced expression of cardiac IL-1beta, TNF-alpha, and intercellular adhesion molecule 1 was augmented in IL-6-deficient mice compared with control mice. Thus cardiac IL-6, expressed mainly by nonmyocardial cells via IL-1beta action during endotoxemia, is likely to suppress expression of proinflammatory mediators and to regulate itself via a negative feedback mechanism. 相似文献
18.
钙调神经磷酸酶依赖的信号通路参与血管紧张素Ⅱ刺激的心肌细胞肥大 总被引:22,自引:1,他引:22
本研究观察了钙调神经磷酸酶依赖的信号通路在血管紧张素Ⅱ诱导的大鼠心肌细胞肥大中的作用。在AngⅡ刺激的大鼠心肌细胞肥大模型上,应用环孢素A(CsA)阻断CaN通路,观察心肌细胞^3H-亮氨酸掺入,CaN,MAPK及PKC活性的变化。结果表明,AngⅡ(10^-7mol/L)刺激大鼠心肌细胞^3H-亮氨酸掺入较对照组增高46%(P〈0.01),CsA(0.5-5μg/ml)可以浓度依赖性方式抑制An 相似文献
19.
Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy 总被引:1,自引:0,他引:1
Eble Diane M.; Qi Ming; Waldschmidt Stephanie; Lucchesi Pamela A.; Byron Kenneth L.; Samarel Allen M. 《American journal of physiology. Cell physiology》1998,274(5):C1226
Agonist-inducedhypertrophy of cultured neonatal rat ventricular myocytes (NRVM) hasbeen attributed to biochemical signals generated during receptoractivation. However, NRVM hypertrophy can also be induced byspontaneous or electrically stimulated contractile activity in theabsence of exogenous neurohormonal stimuli. Using single-cell imagingof fura 2-loaded myocytes, we found that low-density, noncontractingNRVM begin to generate intracellularCa2+ concentration([Ca2+]i)transients and contractile activity within minutes of exposure to the1-adrenergic agonistphenylephrine (PE; 50 µM). However, NRVM pretreated with verapamiland then stimulated with PE failed to elicit[Ca2+]itransients and beating. We therefore examined whether PE-induced [Ca2+]itransients and contractile activity were required to elicit specificaspects of the hypertrophic phenotype. PE treatment (48-72 h)increased cell size, total protein content, total protein-to-DNA ratio,and myosin heavy chain (MHC) isoenzyme content. PE also stimulatedsarcomeric protein assembly and prolonged MHC half-life. However,blockade of voltage-gated L-typeCa2+ channels with verapamil,diltiazem, or nifedipine (10 µM) blocked PE-induced total protein andMHC accumulation and prevented the time-dependent assembly ofmyofibrillar proteins into sarcomeres. Inhibition of actin-myosincross-bridge cycling with 2,3-butanedione monoxime (7.5 mM) alsoprevented PE-induced total protein and MHC accumulation, indicatingthat mechanical activity, rather than[Ca2+]itransients per se, was required. In contrast, blockade of[Ca2+]itransients and contractile activity did not prevent the PE-induced increase in cell surface area, activation of the mitogen-activated protein kinases ERK1 and ERK2, or upregulation of atrial natriuretic factor gene expression. Thus contractile activity is required to elicitsome but not all aspects of the the hypertrophic phenotype induced by1-adrenergic receptoractivation. 相似文献