首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.  相似文献   

2.
Reovirus serotype 3 Dearing (T3D) has shown potential as a novel cancer therapy. To support the increasing demand for reovirus, a two-stage perfusion mode scheme is proposed for cell growth and reovirus production. Mouse L-929 cells were used as the host for reovirus infection due to their ability to grow well in suspension culture. Several L-929 cell growth and reovirus infection characteristics were investigated and optimized in spinner flask batch cultures. For the growth of L-929 cells, a balanced nutrient-fortification of SMEM medium increased the maximum cell density by 30%, compared to normal SMEM; however, ammonia and lactate accumulations were found to inhibit further cell growth. For the production of reovirus, approximately 90% increase in viral yield resulted when the infection temperature was reduced from 37 to 33 degrees C. Infectious reovirus particles were shown to be stable in conditioned medium at 37 and 33 degrees C. The final virus titer was dependent on the multiplicity of infection (MOI) and the host cell density at the time of infection. A combination of an MOI of 0.1 pfu/cell and an initial host cell density of 1.0 x 10(6) cells/mL in fortified medium resulted in a maximum virus titer of (4.59 +/- 0.16) x 10(9) pfu/mL and a specific yield of (2.34 +/- 0.08) x 10(3) pfu/cell. At an optimal harvest time of the infection process, 99% of the virus was associated with the cellular debris. Finally, the presence of 5.0 mM ammonia in the culture medium was shown to seriously inhibit the reovirus yield, whereas lactate concentrations up to 20 mM had no effect.  相似文献   

3.
White spot syndrome virus (WSSV) causes disease and mortality in cultured and wild shrimp. A standardized WSSV oral inoculation procedure was used in specific pathogen-free (SPF) Litopenaeus vannamei (also called Penaeus vannamei) to determine the primary sites of replication (portal of entry), to analyze the viral spread and to propose the cause of death. Shrimp were inoculated orally with a low (10(1.5) shrimp infectious dose 50% endpoint [SID50]) or a high (10(4) SID50) dose. Per dose, 6 shrimp were collected at 0, 6, 12, 18, 24, 36, 48 and 60 h post inoculation (hpi). WSSV-infected cells were located in tissues by immunohistochemistry and in hemolymph by indirect immunofluorescence. Cell-free hemolymph was examined for WSSV DNA using 1-step PCR. Tissues and cell-free hemolymph were first positive at 18 hpi (low dose) or at 12 hpi (high dose). With the 2 doses, primary replication was found in cells of the foregut and gills. The antennal gland was an additional primary replication site at the high dose. WSSV-infected cells were found in the hemolymph starting from 36 hpi. At 60 hpi, the percentage of WSSV-infected cells was 36 for the epithelial cells of the foregut and 27 for the epithelial cells of the integument; the number of WSSV-infected cells per mm2 was 98 for the gills, 26 for the antennal gland, 78 for the hematopoietic tissue and 49 for the lymphoid organ. Areas of necrosis were observed in infected tissues starting from 48 hpi (low dose) or 36 hpi (high dose). Since the foregut, gills, antennal gland and integument are essential for the maintenance of shrimp homeostasis, it is likely that WSSV infection leads to death due to their dysfunction.  相似文献   

4.
Rapid formation and selection of FP (few polyhedra) mutants occurs during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in insect cell culture. The production of HaSNPV for use as biopesticides requires the passaging of the virus over a number of passages to produce enough virus inoculum for large-scale fermentation. During serial passaging in cell culture, FP mutants were rapidly selected, resulting in declined productivity and reduced potency of virus. Budded virus (BV) is usually harvested between 72 and 96 h postinfection (hpi) in order to obtain a high titer virus stock. In this study, the effect of time of harvest (TOH) for BV on the selection rate of HaSNPV FP mutants during serial passaging was investigated. BV were harvested at different times postinfection, and each series was serially passaged for six passages. The productivity and percentage of FP mutants at each passage were determined. It was found that the selection of FP mutants can be reduced by employing an earlier TOH for BV. Serial passaging with BV harvested at 48 hpi showed a slower accumulation of FP mutants compared to that of BV harvested after 48 hpi. Higher cell specific yields were also maintained when BV were harvested at 48 hpi. When BV that were formed between 48 and 96 hpi were harvested and serially passaged, FP mutants quickly dominated the virus population. This suggests that the BV formed and released between 48 and 96 hpi are most likely from FP mutant infected cells.  相似文献   

5.
On-line monitoring of insect cell cultures used for the production of recombinant proteins with the baculovirus expression vector system (BEVS) provides valuable tools for the optimization, operation, and control of the production process. The relative permittivity (epsilon') and CO(2) evolution rates (CER) were measured on-line using the biomass monitor and the infrared CO(2) analyzer, respectively. The growth and infection phases of two different cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni(High-5), were monitored using the above measurements. These in turn were correlated to the progress of the culture by using the off-line measurements of protein produced, virus titer, and biovolume, which is the product of viable cell density and mean cell volume. The epsilon', CER, and the biovolume profiles were closely matched during the growth phase of cells when grown in a batch or fed batch culture. The relationship became more complex when the cultures were either in stationary phase or in the postinfection phase. The epsilon' profile was found to be a good indicator of the process of synchronous baculoviral infection, showing a plateau between 18 and 24 h postinfection (hpi), the period during which budded virus is produced, and a peak at approximately 48 hpi correlated to the onset of accelerated cell lysis. The CER profile continues to increase after the growth period with a peak around the 24 hpi period, after which there is a decline in the profile corresponding to release of virus as seen from virus titer determinations. This was examined for Sf-9 cultures under conditions of cell densities from 3 to 50 x 10(6) cells/mL and MOI values ranging from 0.001 to 1000. The profiles were found to be similar also in the case of the High-5 cells. Thus both measurements give reliable information regarding the physiological status of the cells as seen from their correlation to virus and protein production. A further combination of these with the off-line measured parameters such as the biovolume and metabolite concentrations can give a more detailed understanding of the process and help in the better design and automation of these processes.  相似文献   

6.
The baculovirus expression vector system was employed to produce human apolipoprotein E and β-galactosidase in order to study the effect of multiplicity of infection on secreted and non-secreted recombinant protein production. Prior knowledge of the influence of other cell culture and infection parameters, such as the cell density at time of infection and the time of harvest, allowed determination of the direct and indirect influences of multiplicity of infection on recombinant protein synthesis and degradation in insect cells. Under non-limited, controlled conditions, the direct effect of multiplicity of infection (10−1−10 pfu/cell) on specific recombinant product yields of non-secreted β-galactosidase was found to be insignificant. Instead, the observed increased in accumulated product was directly correlated to the total number of infected cells during the production period and therefore ultimately dependent on an adequate supply of nutrients. Only the timing of recombinant virus and protein production was influenced by, and dependent on the multiplicity of infection. Evidence is presented in this study that indicates the extremely limited predictability of post-infection cell growth at very low multiplicities of infection of less than 0.1 pfu/cell. Due to the inaccuracy of the current virus quantification techniques, combined with the sensitivity of post-infection cell growth at low MOI, the possibility of excessive post-infection cell growth and subsequent nutrient limitation was found to be significantly increased. Finally, as an example, the degree of product stability and cellular and viral protein contamination at low multiplicity of infection is investigated for a secreted recombinant form of human apolipoprotein E. Comparison of human apolipoprotein E production and secretion at multiplicities of infection of 10−4−10 pfu/cell revealed increased product degradation and contamination with intracellular proteins at low multiplicities of infection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Two strains of reovirus were propagated in Vero cells grown in stationary or microcarriers cultures. Vero cells grown as monolayers on T-flasks or in spinner cultures of Cytodex-1 or Cultispher-G microcarriers could be infected with reovirus serotype 1, strain Lang (T1L), and serotype 3, strain Dearing (T3D). A regime of intermittent low speed stirring at reduced culture volume was critical to ensure viral infection of cells in microcarrier cultures. The virus titre increased by 3 to 4 orders of magnitude over a culture period of 150 h. Titres of the T3D reovirus strain were higher (43%) compared to those of the T1L strain in all cultures. Titres were significantly higher in T-flask and Cytodex-1 microcarrier cultures compared to Cultispher-G cultures with respect to either reovirus type. The viral productivity in the microcarrier cultures was dependent upon the multiplicity of infection (MOI) and the cell/bead ratio at the point of infection. A combination of high MOI (5 pfu/cell) and high cell/bead loading (>400 for Cytodex-1 and >1,000 for Cultispher-G) resulted in a low virus productivity per cell. However, at low MOI (0.5 pfu/cell) the virus productivity per cell was significantly higher at high cell/bead loading in cultures of either microcarrier type. The maximum virus titre (8.5 x 10(9) pfu/mL) was obtained in Cytodex-1 cultures with a low MOI (0.5 pfu/cell) and a cell/bead loading of 1,000. The virus productivity per cell in these cultures was 4,000 pfu/cell. The lower viral yield in the Cultispher-G microcarrier cultures is attributed to a decreased accessibility of the entrapped cells to viral infection. The high viral productivity from the Vero cells in Cytodex-1 cultures suggests that this is a suitable system for the development of a vaccine production system for the Reoviridae viruses.  相似文献   

8.
ORF3蛋白促进猪流行性腹泻病毒在Vero细胞上的增殖   总被引:2,自引:1,他引:1  
【背景】猪流行性腹泻(Porcine epidemic diarrhea,PED)是由猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)感染猪而引起的一种急性肠道传染病,常导致病猪水样腹泻、呕吐、脱水。自2010年起,其大规模的暴发给养猪业造成巨大的经济损失。由于对PEDV免疫机理及侵入机制知之甚少,至今仍缺乏有效的PED防治措施。【目的】研究orf3对PEDV体外增殖的影响。【方法】利用基于RNA同源重组的PEDV反向遗传学操作技术拯救一系列携带不同orf3基因及orf3基因缺失的重组PEDV;将获得的重组PEDV以MOI 0.1感染Vero细胞,分别于感染的第8、16、24、32、40、48 h测定其TCID_(50)并绘制病毒生长曲线;分别在感染25 h和36 h利用全自动细胞计数分析仪对6孔板内的细胞进行计数,并于感染后的第12、24、36、48 h用CCK-8试剂盒对其细胞活力进行测定。【结果】RT-PCR结果及细胞病变观察证明成功拯救到了携带不同orf3基因或orf3基因缺失的重组PEDV;进一步的免疫组化分析结果证实PEDV的ORF3蛋白可以在Vero细胞中合成。SPSS软件分析表明携带orf3基因的重组PEDV的滴度(TCID_(50))显著高于缺失orf3基因的重组PEDV的滴度;带有orf3基因的重组PEDV感染Vero细胞25 h和36 h时的活细胞数显著高于缺失orf3基因的重组病毒感染相同时间时的活细胞数;而且重组PEDV感染Vero细胞24 h后,带有orf3基因的重组PEDV的细胞活性显著高于缺失orf3基因的重组病毒。【结论】ORF3蛋白对于PEDV在Vero细胞中的增殖具有促进作用,该作用是通过延缓或减少感染细胞的死亡实现的。本研究为揭示PEDV orf3基因的功能和PEDV复制机制的研究提供理论基础。  相似文献   

9.
D Bardell 《Microbios》1985,43(173):87-91
Replication of human adenovirus type 5 (non-oncogenic), type 7 (weakly oncogenic), and type 12 (highly oncogenic) was studied. Inhibition of cellular oxidative metabolism with sodium cyanide resulted in much lower yields of progeny virions in chimpanzee liver cells, an established cell line derived by biopsy from a normal chimpanzee. Inhibition of oxidative metabolism had no effect on virus replication in HEp-2 cells, an established cell line derived from epidermoid carcinoma tissue from the larynx of a human being. The NaCN, at a concentration of 10(-4) M in cell culture medium, was at a sub-lethal level for host cells during a 48 h period for virus replication under one-step growth conditions.  相似文献   

10.
11.
12.
The production and extracellular release of a recombinant Herpes Simplex Virus (type 2) from monolayers of infected complementing Vero cells (CR2) are addressed. Growth and virus production conditions are identified that provide adequate virus titers with cell seeding densities and viral multiplicities of infection that could be reasonably handled in manufacturing. Harvesting by sonication of cell monolayers is shown to give the highest recovery of infectious virus (to 2.5 x 10(6) pfu/mL) but leads to process stream contamination by cellular proteins through the rupturing of cells (to 28 pg protein/pfu). By comparison, freeze-thaw cycles and osmotic rupture by hypotonic saline or glycerol shock procedures yield only low virus recovery (typically <10% of that by sonication), and are accompanied by yet higher levels of protein contamination (up to 30-fold higher pg protein/pfu). Addition of the polyanionic polymers, heparin or dextran sulphate to a harvest using either hypotonic saline, glycerol shock or isotonic phosphate buffered saline increased the yield of infectious virus in the supernatant. By contrast, addition of polycationic poly-L-lysine resulted in negligible increase in the supernatant virus titer. The highest virus titers (4.7 x 10(7) pfu/mL) were achieved following treatment of roller bottle cultured cells displaying a high cytopathic effect with heparin at 50 microg/mL for at least 3 h post harvest. This procedure also gave the lowest levels of protein contamination (<2 pg protein/pfu). The fivefold lower yield of infectious virus from cultures displaying a low cytopathic effect (<70% CPE) indicates the importance of cell physiological state at harvest.  相似文献   

13.
【目的】p48(ac103)基因在昆虫杆状病毒中高度保守,暗示其具有重要的生物学功能。为了研究该基因的功能,我们首先对该基因的表达特征进行描述。【方法】以杆状病毒代表种——苜蓿银纹夜蛾核型多角体病毒(Autographa californica multiple nucleopolyhedrovirus,AcMNPV)的p48基因为研究对象,利用Bac-to-Bac杆状病毒表达载体系统分别构建了在P48蛋白N-端和C-端融合HA-标签,并且携带绿色荧光蛋白基因和多角体蛋白基因的重组Bacmid。将重组Bacmid转染Sf9细胞,收集含病毒的上清去感染Sf9细胞,在感染后不同时间点收集细胞进行SDS-PAGE电泳,利用商业化的HA抗体进行Western blot分析以检测融合蛋白在昆虫细胞中的表达情况。【结果】用C-端融合HA-标签的重组病毒感染细胞后12h即可检测到一条43kDa左右、能与HA抗体发生特异性结合的蛋白条带,该特异性蛋白的表达一直持续到病毒感染后96h。从感染后48h起一直到96h,均能检测到另外一条约26kDa的蛋白条带也能与HA抗体发生特异性结合。在N-端融合HA-标签的重组病毒感染的细胞中没有检测到与HA抗体特异结合的蛋白。【结论】结果表明,p48基因是个晚期基因,在病毒感染的晚期表达,并且该蛋白在昆虫细胞中表达时N-端可能被剪切。  相似文献   

14.
The aim of the present study was to determine if BHV-1 is able to replicate within in vitro produced embryos and to investigate the degree to which the zona pellucida (ZP) is able to protect in vitro produced embryos against infection with BHV-1. Both ZP-intact and ZP-free matured oocytes, zygotes (1 d post insemination; 1dpi), 8-cell stage embryos (3 dpi), morulae (6 dpi) were incubated for 1 h in 1 ml of MEM containing 10(7.7) TCID(50)/ml BHV-1 (Cooper strain). Three titers (10(5.7), 10(6.7) and 10(7.7) TCID(50)/ml) of the Cooper strain were used for incubation of hatched blastocysts (9 dpi). Bovine embryonic lung cells (BEL) on microcarriers were inoculated following the same protocol as for the embryos. At 0, 12, 24, 36 and 48 h post inoculation (hpi), groups of embryos and BEL cells were collected for virus titration and for the determination of the percentage of viral antigen positive cells by immunofluorescence. For the 3 developmental stages in ZP-free embryos, similar maximal intracellular virus progeny titers were obtained at 24 to 48 hpi ranging from 10(1.32) to 10(1.43) TCID(50)/ 100 embryonic cells. The intracellular virus titer in the BEL cells peaked at 10(3.08) TCID(50)/ 100 BEL cells. The percentage of cells which expressed viral antigens was 13% in ZP-free hatched blastocysts, 17% in ZP-free morulae and 100% in BEL cells. In ZP-intact embryos, no replication of BHV-1 was detected. These results clearly show that only after removal of the zona pellucida, BHV-1 is able to replicate within the in vitro produced embryos, with only a subset of embryonic cells being fully susceptible.  相似文献   

15.
16.
本文利用Bac-to-Bac杆状病毒表达系统构建了含有丙型肝炎病毒(Hepatitis C Virus,HCV)结构蛋白编码基因的重组杆状病毒vAcHCVspl,并获得了HCV结构蛋白在昆虫细胞Sf21中的表达。HCV mRNA转录和蛋白质表达时相分析表明,感染后16h HCV结构蛋白编码基因开始转录,72h达最高峰;蛋白质表达则是在感染后48h开始,72h达到高峰。电镜观察表明vAcHCVspl感染的Sf21细胞96h时在细胞质中可见很多空泡,空泡中可见50nm的球形颗粒,为HCV结构蛋白组装的病毒样颗粒。  相似文献   

17.
The synergistic interactions between Pseudomonas aeruginosa and virulent or attenuated murine cytomegalovirus (MCMV) were compared in vivo. Virulent MCMV challenge at a dose of 5 X 10(5) pfu/mouse intraperitoneally, followed by intranasal superinfection with 5 X 10(6) cfu/mouse of Pseudomonas aeruginosa after 48 h resulted in greater than 80% mortality, apparently owing to a failure of pulmonary clearance mechanisms. Single infections, or the use of attenuated MCMV in synergistic infections, did not result in significant morbidity or mortality. Infection with virulent MCMV in vivo resulted in the rapid spread of virus to the lung, liver, and spleen, followed later by spread to the salivary glands. Attenuated virus was detected in salivary glands only. Virulent MCMV was more effective in adsorbing to, or infecting, spleen cells in vitro than attenuated virus. Viral neutralization experiments using anti-viral serum, rabbit complement, and anti-mouse IgG confirmed the presence of a nonneutralizing antibody on the surface of the virulent virus. Our results suggest that the presence of the nonneutralizing antibody on virulent MCMV allows the virus to preferentially infect, or adsorb to, Fc+ cells in the peritoneum. These cells may then carry the virus, via the lymphatic circulation, to other areas of the body, resulting in the replication of virus in multiple organs. Virus replication in the lung may, in part, be the cause of the observed suppression of pulmonary clearance.  相似文献   

18.
Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression.  相似文献   

19.
A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV) infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi) characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and CD172a-expressing leukocytes of the crypt epithelium of the paraepiglottic tonsils. De novo replication of FMDV was first detected in oropharyngeal swab samples at 12 hpi and viremia occurred at 18–24 hpi, approximately 24 hours prior to the appearance of vesicular lesions. From 12 through 78 hpi, microscopic detection of FMDV was consistently localized to cytokeratin-positive cells within morphologically characteristic segments of oropharyngeal tonsil crypt epithelium. During this period, leukocyte populations expressing CD172a, SLA-DQ class II and/or CD8 were found in close proximity to infected epithelial cells, but with little or no co-localization with viral proteins. Similarly, M-cells expressing cytokeratin-18 did not co-localize with FMDV proteins. Intra-epithelial micro-vesicles composed of acantholytic epithelial cells expressing large amounts of structural and non-structural FMDV proteins were present within crypts of the tonsil of the soft palate during peak clinical infection. These findings inculpate the paraepiglottic tonsils as the primary site of FMDV infection in pigs exposed via the gastrointestinal tract. Furthermore, the continuing replication of FMDV in the oropharyngeal tonsils during viremia and peak clinical infection with no concurrent amplification of virus occurring in the lower respiratory tract indicates that these sites are the major source of shedding of FMDV from pigs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号