首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Island species are susceptible to extinction through disturbances such as habitat transformation. Due to the small size and isolation of islands, species have limited options for refuges and recolonization, making their rehabilitation a conservation priority. Robben Island is a continental island, isolated from the mainland ca. 15 000 years ago, and has been degraded by humans and alien species for nearly 400 years. Mainland areas with similar vegetation should be good reference sites for the biological restoration of the island due to historical connectedness. However, very little information exists as to which species were lost. Here we aim to identify the best mainland sites to use as reference sites for Robben Island based on remaining arthropod diversity on the island. Sites found to be most similar in terms of arthropod diversity to Robben Island were sites north of Robben Island (Elandsbaai and Dwarskersbos) rather than the geographically closest locations. These sites therefore represent ideal reference sites for biological restoration of the island. We do not suggest the reintroduction of species from these localities, but rather Robben Island should be restored to match their vegetation height and cover.  相似文献   

2.
Arthropod assemblages were examined in Lama forest reserve, a protected area situated in the Dahomey gap, southern Benin, composed of plantations, degraded forest and remnants of natural forest. The objectives were to compare assemblages in relation to forest type and use, to elucidate the value of forest plantations for biodiversity conservation and to identify indicator species for specific forest habitats. Arthropods were collected over an 11-month period, using standardized sets of traps (pitfall, emergence, Malaise and flight intercept traps). Nine different habitats were studied, including natural and degraded forest, forest plantations (Tectona grandis and Senna siamea) of different age, and isolated forest fragments. Our analysis focused on detritivorous and xylophagous arthropods but also included ground beetles and heteropterans, totalling 393 species. We found no differences in species richness among natural and degraded forest habitats in the centre of the reserve (Noyau central). Outside of the Noyau central, species richness was highest in old teak plantations and isolated forest fragments and lowest in young teak and fuelwood plantations. Detrended correspondence analysis (DCA) separated three main groups: (1) natural forest, (2) degraded forest and young plantations, and (3) old plantations and isolated forest fragments. Multiple regression of DCA scores of the first two axes on environmental variables identified one natural and three disturbance-related predictors of arthropod assemblages in Lama forest: soil type (texture), canopy height, naturalness (proportion of Guineo-Congolian plant species) and understorey vegetation cover. We identified 15 indicator species for six different forest habitats. The highest numbers were found in abandoned settlements and old teak plantations. β-diversity was similar among the three DCA ordination groups (degraded forest excluded). Values for β-diversity were relatively high, suggesting that all major forest habitats contribute significantly to regional species pools and should therefore be protected. To enhance arthropod diversity, we propose that management practices in Lama forest should aim to encourage the development of species-rich understorey vegetation of the Guineo-Congolian phytogeographical region.  相似文献   

3.
Cousine Island, Seychelles, is of major conservation significance as it is in a biodiversity hotspot. Furthermore, it is relatively pristine, and is apparently the only tropical island over 20 ha with no alien invasive mammals. This study focuses on the island's log and litter arthropods, which were sampled by extraction methods from the dominant species, Pisonia grandis, Ficus spp. and Cocos nucifera. Stage of decomposition, and forest type in which the logs occurred, both significantly influenced the composition and structure of the arthropod assemblages. Young logs were significantly richer in species than older logs, possibly because they had the most resources and microhabitats. There were some significant changes in arthropod species richness, composition and abundance between species of young logs, but not old ones, because as logs decomposed, arthropod assemblages converged. Nevertheless, each old log species had some arthropod species not present in other log species, which has important implications for conservation. Arthropod assemblages in woody litter varied according to the forest type in which they occurred, and were different from those in logs in the same forest type. Cousine Island arthropod species richness, both in logs and litter, was comparable to figures from other tropical areas. As the logs, especially P. grandis, are home to many Seychelles endemic species, their conservation is essential. Furthermore, as the arthropods are also the main food of certain threatened Seychelles vertebrates, their conservation also underpins a food chain on this unique tropical island.  相似文献   

4.
Both invasive alien trees and agricultural conversion have major impacts on biodiversity. We studied here the comparative impact of these two types of land transformation on a wide range of surface-active arthropod species using pitfall traps, with evergreen sclerophyllous natural vegetation (fynbos) as the control. The study was in the Cape Floristic Region, a global biodiversity hotspot, where alien trees are of major concern and where vineyards replace natural fynbos vegetation. Surface-active arthropods were selected as they are species rich, relatively immobile, and occur in high abundance. We hypothesized that the impact of the two types of land cover transformation would produce similar qualitative and quantitative effects on the arthropods. We also compared the results in the transformed and natural areas with those in areas cleared of alien trees. Arthropod species richness in cleared areas was higher than in vineyards and more similar to that in natural fynbos, while alien trees had the lowest. Overall abundance scores were highest in cleared areas, closely followed by fynbos, then vineyards and lowest in alien trees. Several species were restricted to each vegetation type, including alien trees. In terms of assemblage composition, all vegetation types were significantly different, although fynbos and vineyards grouped, suggesting that vineyards have less impact on the arthropod community than do alien trees. When rare species were excluded, vineyards and cleared sites grouped, indicating some recovery but only involving those species that were common and habitat tolerant. Our results suggest that vineyards retain a greater complement of indigenous species than alien trees, but that clearing of these aliens soon encourages establishment of indigenous species. Although there were significant differences in soil moisture and litter depth within and between vegetation types, we did not record them as significantly affecting species richness or abundance, even in alien vegetation, an encouraging sign for restoration.  相似文献   

5.
The rapid expansion of human altered landscapes affects biodiversity on every continent. A fundamental goal of conservation biologists is to understand why certain species are at risk of extinction while others are able to persist in human altered landscapes. Afforestation, the conversion of unforested lands to planted forest, is rapidly altering many natural landscapes worldwide. In the Cerrado (Brazilian savanna), a global biodiversity hotspot, a shortage of government incentives has the landscape riddled with abandoned plantation forests that are not subject to active restoration projects. Studies investigating the impacts of abandoned plantations on biodiversity are strikingly limited. We examine the effects of abandoned Eucalyptus plantations on the structure of Cerrado lizard communities. We assessed changes in lizard capture, richness and equitability along cerrado sensu strictoEucalyptus transects. Our results indicate abandoned Eucalyptus plantations have subsets of Cerrado species persisting with a great loss of endemic species. The cerrado sensu strictoEucalyptus linear transect analysis demonstrated distance from native habitat is positively correlated with loss of biodiversity. We performed correspondence analyses to summarize the variation in species captures across different sites, habitats and pitfall array positions. These analyses depicted strong species associations between habitats and their pitfall array positions. This study is the first to show the negative impacts of abandoned Eucalyptus plantations on Cerrado lizard communities, serving as a cautionary tale of Cerrado biodiversity non-resilience in abandoned Eucalyptus plantations. Mitigation requires that abandoned Eucalyptus plantations are made more suitable to Cerrado lizards by implementing targeted habitat heterogeneity restoration.  相似文献   

6.
Landscape context and contrast are major features of transformed landscapes. These concepts are largely described in terms of vegetation and land use, and are rarely used on how other biodiversity responds to these anthropogenic boundaries. South African grassland matrix is naturally dotted with indigenous forest patches which have recently been transformed with plantations of non-native species. We investigate how various arthropod groups (detritivores, predators, ants) respond to juxtaposition of pines, natural forests and grasslands. We assess landscape context effects between natural forests and pines by determining how species that commonly occur in the interiors of these habitats use the adjacent habitat, and how landscape contrast between natural forests and grassland affects these groups proportionately. We sampled arthropods using pitfall traps and active searches in transects running from natural forest interiors across the edge into the matrix interior (grassland or pines). Natural forests had higher predator and detritivore diversity, while grassland had greater ant diversity. Results highlighted the complementarity of natural forests and grassland for arthropod diversity. Higher beta-diversity was recorded across landscape contrast than landscape context. Pine and natural forest associated species overlapped into adjacent habitats indicating that pines are used by certain natural forest species. However, pines are not true natural forest extensions, with only some species being supported. Pines may be connecting naturally isolated arthropod populations, which could have important evolutionary consequences. Only through appreciation of a range of arthropod groups and their response to context and contrast across the whole landscape can we undertake meaningful biodiversity conservation.  相似文献   

7.
Many contemporary landscapes have vast areas of production land-uses within landscape mosaics, which may impact species dispersal and occurrence. Here, we determined the extent to which commercial exotic plantation forests affect arthropod diversity associated with natural Afrotemperate forests in the southern Cape Afrotemperate landscape mosaic, South Africa. Natural forests and fynbos vegetation naturally coexist here, with the addition of exotic plantation forests to form a heterogeneous landscape. Epigaeic arthropods were collected by means of pitfall trapping at stations along transects from inside natural Afrotemperate forest, across the edge and into the surrounding land use, which included natural fynbos vegetation, mature forestry plantation blocks (Pinus radiata) and areas where plantations have been clear-felled. Stations were set at 5, 10, 20, 30 and 50 m to both sides of the forest edge with the addition of 100 m stations situated in the natural forest. Arthropod assemblages were distinct in all land-use types. Natural edge effect between forest and fynbos, as measured by arthropod compositional changes, was 20 m into natural forests, yet when bordered by plantations this edge increased up to 30 m into the forest. Once plantations were clear-felled, edge effects increased up to 50 m into natural forests. Responses in terms of assemblage composition and species richness were however taxon specific. Results show that (1) pine plantations are not alternative habitat for native Afrotemperate forest arthropods, (2) there were stark changes in arthropod assemblage composition at edges between these land-use types and (3) that the effects of timber plantation practices (re: clear-felling) also penetrate deep into surrounding natural forests and need to be considered in regional landscape planning. The need for an effective rehabilitation strategy of clear-felled areas is identified as key priority for bordering natural forests. Ongoing monitoring in both the disturbed area and the adjoining natural forest should be undertaken to ensure sufficient recovery.  相似文献   

8.
Species can change their activity patterns in response to biotic and abiotic factors, such as sunlight and moonlight. The influence of these variables is a key question for ecological research and biodiversity conservation. The conversion of natural grasslands into tree plantations has reached high levels in temperate South America. These novel ecosystems elicit behavioural changes that can be detrimental or beneficial to wildlife. In this research, we describe the activity patterns of mammals (mid and large-sized) during sun and lunar phases using camera trap data (2015–2021; 22 926 camera/nights) to assess the effects of the season (warm and cold), habitat type (native forests, grasslands, Eucalyptus plantations) and landscape afforestation degree (10%–90%) in eight landscape samples (5 km radius) at Uruguayan grasslands. This represents the first study of temporal patterns in grassland afforestation worldwide, and concerning solar time and lunar patterns in Uruguay. Across 257 camera trap stations, 5297 independent detections of 13 species were recorded. While there were no significant differences among seasons nor through a landscape gradient of afforestation cover, the local habitat type affected most species temporal niches, finding significant differences between native ecosystems and Eucalyptus plantations, despite their close spatial proximity. Cathemeral and nocturnal activity patterns were seen for 12 species, and nine showed lunarphobic or lunarphilic trends according to habitat cover. In tree plantations, five of seven species narrowed their temporal activity compared to native habitats, and four changed their nocturnal activity. These alterations showed that several species adjust their daily activity patterns according to sun and moon phases under Eucalyptus plantations, probably reacting to changes in predation risk, hunting pressure, or foraging opportunities. Given that afforestation is projected to grow in southern South America, we must improve our understanding of how species adjust their activities in such novel ecosystems to identify measures needed to increase their conservation opportunities.  相似文献   

9.
In this study, we investigated the effects of the partial conversion of native Amazon savanna into a eucalyptus plantation on the richness, composition, and abundance of medium and large mammals. Considering these plantations as an integral component of a patchwork savanna landscape, we verified how the negative effects of these plantations can be buffered by the conservation of remnants of native habitat within their area. We analyzed the contribution of each type of Amazonian savanna to the maintenance of the mammalian fauna and the potential of eucalyptus plantations to substitute these native habitats. A total of 23 mammal species were recorded in line-transect surveys conducted within the conserved savanna. By contrast, only eight species were recorded in the eucalyptus plantation and none of them were exclusive to this vegetation. However, the landscape patchwork formed by plantations and savanna was more diverse and contained 19 species of mammals, highlighting the potential importance of remnant savanna vegetation. The maintenance of remnants of savanna habitat may thus be essential for ensuring the conservation of mammals in the anthropogenic landscape of this region. It will also be important to include as many different subtypes of native savanna vegetation as possible and to consider the connectivity between habitats.  相似文献   

10.
Aim Conservation of species is an ongoing concern. Location Worldwide. Methods We examined historical extinction rates for birds and mammals and contrasted island and continental extinctions. Australia was included as an island because of its isolation. Results Only six continental birds and three continental mammals were recorded in standard databases as going extinct since 1500 compared to 123 bird species and 58 mammal species on islands. Of the extinctions, 95% were on islands. On a per unit area basis, the extinction rate on islands was 177 times higher for mammals and 187 times higher for birds than on continents. The continental mammal extinction rate was between 0.89 and 7.4 times the background rate, whereas the island mammal extinction rate was between 82 and 702 times background. The continental bird extinction rate was between 0.69 and 5.9 times the background rate, whereas for islands it was between 98 and 844 times the background rate. Undocumented prehistoric extinctions, particularly on islands, amplify these trends. Island extinction rates are much higher than continental rates largely because of introductions of alien predators (including man) and diseases. Main conclusions Our analysis suggests that conservation strategies for birds and mammals on continents should not be based on island extinction rates and that on islands the key factor to enhance conservation is to alleviate pressures from uncontrolled hunting and predation.  相似文献   

11.
Commercial plantations and alien tree invasions often have substantial negative impacts on local biodiversity. The effect of plantations on faunal communities in the fire‐adapted fynbos vegetation of the Cape Floristic Region biodiversity hotspot is not yet well quantified. We studied small mammal community structure in alien Pinus radiata plantations and adjacent fynbos regenerating after clear‐felling of plantations on the Cape Peninsula, South Africa. Small mammal sampling over 1,800 trap‐nights resulted in 480 captures of 345 individuals (excluding recaptures) representing six species. Significantly more species, individuals (12 X) and biomasses (29 X) of small mammals occurred on recovering fynbos sites compared to plantations. This was commensurate with a higher diversity of plant growth forms, vegetation densities and live vegetation biomass. Only one small mammal species, the pygmy mouse (Mus minutoides), was consistently trapped within plantations. Fynbos sites were dominated by three small mammal species that are ecological generalists and early successional pioneer species, rendering the recovering fynbos slightly depauperate in terms of species richness and evenness relative to other studies done in pristine fynbos. We make three recommendations for forestry that would facilitate the restoration of more diverse natural plant communities and progressively more diverse and dynamic small mammal assemblages in a key biodiversity hotspot.  相似文献   

12.
Eucalyptus spp. are commonly planted, forming non-native plantations, including the tropics and their wildlife conservation value is relatively unknown. Recent studies have concluded that secondary forests and tree plantations are less diverse than well-developed tropical rain forests. However, introduced Eucalyptus stands harbored similar species richness to surrounding native woodland in temperate woodlands in North America though the identity of the species present may differ. Species composition, as well as dominance curves and differences in community structure add additional insight to understanding faunistic responses to replacement of native woodland by Eucalyptus plantations. Here, we compared species richness, diversity patterns, and the distribution of non-weaving spiders between native woodlands and Eucalyptus plantations in a temperate region of Mexico. We found more Lycosidae species in all plantation stands. Other community attributes were not consistently different between plantations and native woodlands. This is explained by similarities between, and differences within, the understory of the two main vegetation types. Multivariate analyses identified three spider groups and five spider species could be identified as indicators of these groups. A comparison of the number of species of the wandering spiders between the two vegetation types suggests a compensation pattern that is reported here for the first time.  相似文献   

13.
Australia is unique in having two highly diverse plant genera, Eucalyptus and Acacia, that dominate the vegetation on a continent‐wide scale. The recent shift in plantation forestry away from exotic Pinus radiata to native Eucalyptus species has resulted in much more extensive exchange of biota between native forest and plantation ecosystems than exchange in the past with plantations of exotic species. Growing numbers of hectares are being planted to Eucalyptus globulus across Australia, and plantations are providing resources and corridors for native biota. The present paper focuses on both the benefits and risks of having large‐scale forestry plantations of native species that are closely related to dominant native taxa in local forests. At least 85 species of insects have been recorded as pests of Eucalyptus plantations around Australia; the vast majority of these have been insects using the same host species, or closely related taxa, in native forests. Plantations of native species may also benefit from closely related local forests through the presence of: (i) the diverse array of ectomycorrhizal fungi favourable for tree growth; (ii) natural enemies harboured in native habitats; and (iii) recruitment of other important mutualists, such as pollinators. Exchanges work in two directions: plantations are also likely to influence native forests through the large amount of insect biomass production that occurs in outbreak situations, or through the introduction or facilitation of movements for insects that are not native to all parts of Australia. Finally, older plantations in which trees flower may exchange genes with surrounding forest species, given the high degree of hybridization exhibited by many Eucalyptus species. This is an aspect of exchange for which few data have been recorded. In summary, because of Australia’s unique biogeography, plantation forestry using eucalypt species entails exchanges with natural habitats that are unparalleled in scale and diversity in any other part of the world. More exchanges are likely as plantations occupy greater area, and as the time under cultivation increases.  相似文献   

14.
Ecological networks (ENs) of indigenous vegetation among commercial forestry plantations have been implemented to offset the negative effects of the alien plantation trees on local biodiversity. However, it is not known whether these ENs are equivalent to protected areas (PAs) in terms of their grassland biodiversity. To address this knowledge gap, we investigated how well grassland plant species richness and composition in an EN corresponds to similar habitats in an adjacent PA. This took place in grasslands on the east coast of South Africa, and was done at four paired sites using ten replicates at each of the eight sites. Pairwise comparisons (EN vs. PA) of plant species composition yielded statistically smaller differences than comparisons between different pairs of sites within either the EN or PA, illustrating considerable turnover of species whether or not they were in an EN or PA. Overall, there were fewer plant species in the EN for three of the four pairs of sites. Nevertheless, plant species composition was similar in each pair of sites. The grassland EN was also characterized by greater maximum vegetation height and less green vegetation cover. When differences between the EN and a PA were viewed against the natural variation of abiotic and biotic conditions across the landscape, they were small. We conclude that ENs of natural habitat contribute substantially to biodiversity conservation in transformed, commercially-productive landscapes, are almost as good as PAs for maintaining grassland plant diversity.  相似文献   

15.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

16.
The natural vegetation of the Shire Highlands of Malawi has become fragmented because of human activities. As a consequence, some species of mammals have become locally extinct and the population numbers and geographical ranges of other species have declined. This study investigated the species richness of mammals on a commercial tobacco farm, and the importance of remnants of natural vegetation on farms for the conservation of mammals. The farm covered 180 ha and supported 44 species of mammals (equivalent to 66% of the species known to occur in the Shire Highlands at a similar altitude, and 24% of the total mammalian fauna of Malawi). Most of the species were bats (22 species) and rodents (13 species). The largest remnants of natural 'miombo' woodland supported more species and more individuals than smaller remnants. The high species richness was due, in part, to the variety of different habitats on the farm ('miombo' woodland, riverine forest, grassland, swamp, streams and dams), as well as to good conservation practices. The farm is especially important for the conservation of 13 species which are rare and/or have limited geographical ranges in Malawi. It is suggested that well-managed farms which contain remnants of natural vegetation can play a significant role in the conservation of mammals, and other vertebrates, in Central Africa.  相似文献   

17.
Abstract La Réunion Island has the largest area of intact vegetation of the islands in the Mascarene archipelago. Biological invasions are the primary threat to biodiversity in the intact habitats of the island (those not already transformed by agriculture and urbanization). Our study aimed to identify areas to prioritize in managing invasive alien plants for biodiversity conservation. We used extensive surveys of 238 distinct untransformed areas on La Réunion to define the current distribution patterns of all invasive species. Using expert knowledge, we compiled maps of the current distribution of the 46 most widespread/important invasive plants at the habitat scale (identified according to vegetation structure). Data from 440 botanical relevés for the 20 most threatening invasive alien plant species across the island and climatic envelope models were used to derive climatic suitability surfaces; these were used to map potential distributions for these species. More than 10 species invade 16.7% of the remaining habitat. Five habitat types are invaded by 25 or more species, and eight have fewer than 10 invasive alien plant species. Cluster analysis based on presence/absence of species in the 18 habitat types produced eight groups of species that invade particular habitats. Potential distribution models show that some species have invaded large parts of their potential range (e.g. Fuchsia magellanica, Furcraea foetida, Hiptage benghalensis), whereas others have the potential to increase their range substantially (e.g. Clidemia hirta, Strobilanthes hamiltonianus, Ulex europaeus). Management implications are identified for both groups. Three broad groups of habitats were identified: (i) intact habitats with a low level of invasion (e.g. subalpine shrubland); (ii) moderately invaded habitats with varying levels of intactness (ranging from windward submountain rainforest to the Acacia heterophylla forest); and (iii) habitats with little remaining intact area and high levels of invasion (e.g. lowland rainforest). Different management interventions are appropriate for these three groups.  相似文献   

18.
Arthropod abundance has been hypothesized to be correlated with plant diversity but the results of previous studies have been equivocal. In contrast, plant productivity, vegetation structure, abiotic site conditions, and the physical disturbance of habitats, are factors that interact with plant diversity, and that have been shown to influence arthropod abundance. We studied the combined effect of plant species diversity, productivity and site characteristics on arthropod abundance in 71 managed grasslands in central Germany using multivariate statistics. For each site we determined plant species cover, plant community biomass (productivity), macro- and micronutrients in the soil, and characterized the location of sites with respect to orographic parameters as well as the current and historic management regimes. Arthropods were sampled using a suction sampler and classified a priori into functional groups (FGs). We found that arthropod abundance was not correlated with plant species richness, effective diversity or Camargo's evenness, even when influences of environmental variables were taken into account. In contrast, plant community composition was highly correlated with arthropod abundances. Plant community productivity influenced arthropod abundance but explained only a small proportion of the variance. The abundances of the different arthropod FGs were influenced differentially by agricultural management, soil characteristics, vegetation structure and by interactions between different FGs of arthropods. Herbivores, carnivores and detritivores reacted differently to variation in environmental variables in a manner consistent with their feeding mode. Our results show that in natural grassland systems arthropod abundance is not a simple function of plant species richness, and they emphasize the important role of plant community composition for the abundance patterns of the arthropod assemblages.  相似文献   

19.
The Cape Floristic Region of South Africa is a global biodiversity hotspot threatened by invasive alien plants (IAPs). We assessed the effect of plant invasions, and their subsequent clearing, on riparian arthropod diversity. Foliage-active arthropod communities were collected from two native and one invasive alien tree species. Alpha- and beta-diversity of their associated arthropod communities were compared between near pristine, Acacia-invaded and restored sites. Arthropod alpha-diversity at near pristine sites was higher than at restored sites, and was lowest at invaded sites. This was true for most arthropod taxonomic groups associated with all native tree species and suggests a general trend towards recovery in arthropod alpha-diversity after IAP removal. Overall, arthropod species turnover among sites was significantly influenced by plant invasions with communities at near pristine sites having higher turnover than those at restored and invaded sites. This pattern was not evident at the level of individual tree species. Although arthropod community composition was significantly influenced by plant invasions, only a few significant differences in arthropod community composition could be detected between restored and near pristine sites for all tree species and arthropod taxonomic groups. Assemblage composition on each tree species generally differed between sites with similar degrees of plant invasion indicating a strong turnover of arthropod communities across the landscape. Results further suggest that both arthropod alpha- and beta-diversity can recover after IAP removal, given sufficient time, but catchment signatures must be acknowledged when monitoring restoration recovery.  相似文献   

20.
1. The patterns of arthropod diversity were investigated in 24 montane wetlands in Switzerland. These differed in altitude, management regime (cattle-grazing vs. mowing), vegetation structure (index combining vegetation height and density) and degree of habitat fragmentation.
2. The general arthropod diversity was determined by net sampling at 10 sampling points per site. The diversity of grasshoppers and butterflies was measured by counting species richness at the site and species density (species richness per unit area) on transects. The species richness of grasshoppers and butterflies was found to be more sensitive to the geographical attributes of the site whereas species density was more affected by the habitat quality.
3. Grasshopper diversity decreased within the observed altitudinal range (800–1400 m) and was higher at grazed sites, whereas butterfly diversity was higher at mown sites. Arthropod diversity but not abundance of arthropods was positively related to the vegetation structure.
4. The species richness of butterflies was negatively influenced by the degree of habitat fragmentation: both the size of habitat as well as the area of wetland habitats within 4 km were related positively to the number of specialist wetland butterflies.
5. Late mowing as well as low-density cattle-grazing are appropriate management actions to maintain arthropod diversity in montane wetlands. In order to establish site-specific management plans, the biology of the present target species as well as the historical context should be considered.
6. We suggest that the best protection for the species examined in this study would be a network of wetland sites managed using a variety of traditional, non-intensive methods. This can only be achieved by coordinated planning of conservation measures among sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号