首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of the present study showed the presence of a high-affinity and saturable binding of [3H]-ketanserin to frontal and parietal brain membranes obtained postmortem from bipolar, depressed, schizophrenic patients and normal controls. The human brain samples (60 frontal cortex and 51 parietal cortex), were donated by the Stanley Foundation Brain Collection. The overall data showed that normal controls, depressed and schizophrenic patients had a higher density in the frontal than in the parietal cortex, while bipolar patients did not show any difference. When the data were analysed according to the two hemispheres, some additional, intriguing observations were made: it emerged that [3H]-ketanserin binding sites did not show any difference in the two frontal cortices, while they were less represented in the right parietal cortex of normal and bipolar patients and more dense in schizophrenic patients. In conclusion, our study has demonstrated the presence of heterogenous alterations of [3H]-ketanserin binding sites in healthy controls and different psychiatric disorders that may be of help in a further elucidation of the specific role that 5-HT(2A) receptors may play in these disorders.  相似文献   

2.
We investigated the role of maternal exposure to human influenza virus (H1N1) in C57BL/6 mice on Day 9 of pregnancy on pyramidal and nonpyramidal cell density, pyramidal nuclear area, and overall brain size in Day 0 neonates and 14-week-old progeny and compared them to sham-infected cohorts. Pyramidal cell density increased significantly (p < 0.0038) by 170% in Day 0 infected mice vs. controls. Nonpyramidal cell density decreased by 33% in Day 0 infected progeny vs. controls albeit, nonsignificantly. Pyramidal cell nuclear size decreased significantly (p < 0.0465) by 29% in exposed newborn mice vs. controls. Fourteen-week-old exposed mice continued to show significant increases in both pyramidal and nonpyramidal cell density values vs. controls respectively (p < 0.0085 E1 (exposed group 1), p < 0.0279 E2 (exposed group 2) pyramidal cell density; p < 0.0092 E1, p < 0.0252 E2, nonpyramidal cell density). By the same token, pyramidal cell nuclear size exhibited 37–43% reductions when compared to control values; these were statistically significant vs. controls (p < 0.04 E1, p < 0.0259 E2). Brain and ventricular area measurements in adult exposed mice also showed significant increases and decreases respectively vs. controls. Ventricular brain ratios exhibited 38–50% decreases in exposed mice vs. controls. While the rate of pyramidal cell proliferation per unit area decreased from birth to adulthood in both control and exposed groups, nonpyramidal cell growth rate increased only in the exposed adult mice. These data show for the first time that prenatal exposure of pregnant mice on Day 9 of pregnancy to a sublethal intranasal administration of influenza virus has both short-term and long-lasting deleterious effects on developing brain structure in the progeny as evident by altered pyramidal and nonpyramidal cell density values; atrophy of pyramidal cells despite normal cell proliferation rate and final enlargement of brain. Moreover, abnormal corticogenesis is associated with development of abnormal behavior in the exposed adult mice.  相似文献   

3.
Recent data from several reports indicate that free radicals are involved in aetiopathogenesis of many human pathologies including neuropsychiatric disorders such as schizophrenia, bipolar disorder etc. In the present study, we aimed at determining and evaluating levels of malondialdehyde (MDA), a product of lipid peroxidation, and antioxidant enzyme superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity levels in patients diagnosed with schizophrenia (n = 25) and bipolar disorder (n = 23). The control group was composed of 20 healthy subjects. There was a significant increase in MDA levels of patients with schizophrenia and bipolar disorder compared with controls. SOD and GSH-Px activity levels were significantly higher in the schizophrenic group compared with controls. SOD activity levels in bipolar the group were significantly higher than controls whereas there were no significant changes in GSH-Px activity levels in the bipolar group and controls. Significant differences between lipid peroxidation product and antioxidant enzyme (SOD and GSH-Px) activity levels in schizophrenic and bipolar disorder patients compared with controls leads us to believe that these differences are related to the heterogenities in aetiologies of these disorders.  相似文献   

4.
The Disrupted-in-Schizophrenia-1 (DISC1) gene has been implicated in both schizophrenia and bipolar disorder by linkage and genetic association studies. Altered prefrontal cortical function is a pathophysiological feature of both disorders, and we have recently shown that variation in DISC1 modulates prefrontal activation in healthy volunteers. Our goal was to examine the influence of the DISC1 polymorphism Cys704Ser on prefrontal function in schizophrenia and bipolar disorder. From 2004 to 2008, patients with schizophrenia (N = 44), patients with bipolar disorder (N = 35) and healthy volunteers (N = 53) were studied using functional magnetic resonance imaging while performing a verbal fluency task. The effect of Cys704Ser on cortical activation was compared between groups as Cys704 carriers vs. Ser704 homozygotes. In contrast to the significant effect on prefrontal activation we had previously found in healthy subjects, no significant effect of Cys704Ser was detected in this or any other region in either the schizophrenia or bipolar groups. When controls were compared with patients with schizophrenia, there was a diagnosis by genotype interaction in the left middle/superior frontal gyrus [family-wise error (FWE) P = 0.002]. In this region, Ser704/ser704 controls activated more than Cys704 carriers, and there was a trend in the opposite direction in schizophrenia patients. In contrast to its effect in healthy subjects, variation in DISC1 Cys704Ser704 genotype was not associated with altered prefrontal activation in patients with schizophrenia or bipolar disorder. The absence of an effect in patients may reflect interactions of the effects of DISC1 genotype with the effects of other genes associated with these disorders, and/or with the effects of the disorders on brain function.  相似文献   

5.
It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity.  相似文献   

6.
The sialic acid/glycosaminoglycan ratio was determined in 35 coronary artery ectasia patients and 35 control subjects to determine the possible role of fluoride in the etiology of the disease. The coronary artery ectasia patients and controls were selected from subjects who underwent coronary angiography. The mean serum sialic acid level was significantly lower in patients with coronary artery ectasia (CAE) than in controls (340.3 ± 28.6 vs. 427.0 ± 15.9 μg/mL, respectively; p < 0.001). The mean serum glycosaminoglycan level was significantly higher in patients with CAE than in controls (5,013.1 ± 158.6 vs. 3,833.6 ± 237.1 μg/mL, respectively; p < 0.001). The sialic acid/glycosaminoglycan ratio in patients with coronary artery ectasia was significantly lower than in controls (0.068 ± 0.007 vs. 0.111 ± 0.005; p < 0.001). There was more than 38.7% reduction in this ratio in patients with CAE when compared with controls. We demonstrated that chronic fluoride exposure has an important role in pathogenesis of coronary artery ectasia.  相似文献   

7.
Twin, family and recent molecular studies support the hypothesis of genetic overlapping between schizophrenia and bipolar disorder. Brain structural features shared by both psychiatric disorders might be the phenotypic expression of a common genetic risk background. Interleukin‐1 (IL‐1) cluster (chromosome 2q13) genetic variability, previously associated with an increased risk both for schizophrenia and for bipolar disorder, has been also associated with gray matter (GM) deficits, ventricular enlargement and hypoactivity of prefrontal cortex in schizophrenia. The aim of the present study was to analyze the influence of IL‐1 cluster on brain morphology in bipolar disorder. Genetic variability at IL‐1B and IL‐1RN genes was analyzed in 20 DSM‐IV ( Diagnostic and Statistical Manual of Mental Disorders ‐Fourth Edition) bipolar patients. Magnetic resonance imaging (MRI) measurements were obtained for whole‐brain GM and white matter, dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, hippocampus and lateral ventricles. MRI data were corrected for age and cranial size using regression parameters from a group of 45 healthy subjects. A ?511C/T polymorphism (rs16944) of IL‐1B gene was associated with whole‐brain GM deficits (P = 0.031) and left DLPFCGM deficits (P = 0.047) in bipolar disorder patients. These findings support the hypothesis of IL‐1 cluster variability as a shared genetic risk factor contributing to GM deficits both in bipolar disorder and in schizophrenia. Independent replication in larger samples would be of interest to confirm these results.  相似文献   

8.
Tetrahydrobiopterin (BH4) is an essential cofactor for amine neurotransmitter synthesis. BH4 also stimulates and modulates the glutamatergic system, and regulates the synthesis of nitric oxide by nitric oxide synthases. A connection between BH4 deficiencies and psychiatric disorders has been previously reported; major depression and obsessive-compulsive disorder have been found in subjects with a BH4 deficiency disorder and more recently we have observed a robust plasma deficit of biopterin (a measure of BH4), in a large group of schizophrenic patients compared to control subjects. To extend our previous finding in schizophrenia, we analyzed plasma biopterin levels from patients with schizoaffective and bipolar disorders. A significant difference in biopterin was seen among the diagnostic groups (P < 0.0001). Post hoc analyses indicated significant biopterin deficits relative to the normal control group for the schizoaffective group, who had biopterin levels comparable to the schizophrenic group. Bipolar disorder subjects had plasma biopterin levels that were higher that the schizoaffective disorder group and significantly higher than the schizophrenic group. The demonstrated significant biopterin deficit in both schizophrenia and schizoaffective disorder, may suggest an etiological role of a BH4 deficit in these two disorders, via dysregulation of neurotransmitter systems.  相似文献   

9.
Jakobsen B  Tasker A  Zimmer J 《Amino acids》2002,23(1-3):37-44
Summary.  The neurotoxicity of domoic acid was studied in 2–3 week old rat hippocampal slice cultures, derived from 7 day old rat pups. Domoic acid 0.1–100 μM was added to the culture medium for 48 hrs, alone or together with the glutamate receptor antagonists NS-102 (5-Nitro-6,7,8,9-tetrahydrobenzo[G]indole-2,3-dione-3-oxime), NBQX (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline) or MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate), followed by transfer of the cultures to normal medium for additional 48 hrs. Neuronal degeneration in the fascia dentata (FD), CA3 and CA1 hippocampal subfields was monitored and EC50 values estimated by densitometric measurements of the cellular uptake of propidium iodide (PI). The CA1 region was most sensitive to domoic acid, with an EC50 value of 6 μM domoic acid, estimated from the PI-uptake at 72 hrs. Protective effects of 10 μM NBQX against 3 and 10 μM domoic acid were observed for both dentate granule cells and CA1 and CA3c pyramidal cells. NS102 and MK 801 only displayed protective effects when combined with NBQX. MK801 significantly increased the combined neuroprotective effect of NBQX and NS102 against 10 μM domoic acid in both CA1 and FD, but not in CA3. We conclude, that domoic acid neurotoxicity in CA3 and in hippocampal slice cultures in general primarily involves AMPA/kainate receptors. At high concentrations (10 μM domic acid) NMDA receptors are, however, also involved in the toxicity in CA1 and FD. Received June 29, 2001 Accepted August 6, 2001 Published online June 3, 2002  相似文献   

10.
This study aims at determining the association between markers of hepatic injury and serum, urinary, and intra-erythrocyte magnesium concentrations and dietary magnesium intake in obese children and adolescents. In a case–control study, 42 obese children and adolescents (8–18 years) and 42 sex- and puberty-matched controls were studied. Serum, urinary, and intra-erythrocyte magnesium levels, indices of insulin sensitivity, and liver enzymes were measured. Dietary magnesium intake was assessed using a food frequency questionnaire. Obese children and adolescents exhibited insulin resistance as determined by a higher fasting insulin and the HOMA-IR (p < 0.001) and lower QUICKI indices (p = 0.001); in addition these subjects had significantly higher intra-erythrocyte magnesium (IEM) concentrations, than non-obese ones (3.99 ± 1.05 vs. 3.35 ± 1.26 mg/dL of packed cell; p = 0.015). Among liver enzymes, only gamma-glutamyl transferase (GGT) was significantly higher in obese than in non-obese subjects (22.7 ± 9.4 vs. 17.1 ± 7.9 U/l; p = 0.002). A positive association was found between GGT and IEM in both groups; however in multivariate analysis, in obese subjects, only GGT (p = 0.026) and, in non-obese subjects, only age (p = 0.006) remained as significant predictors of IEM. In conclusion, increased IEM concentration was seen in insulin-resistant obese children and adolescents; furthermore, serum GGT was associated with IEM, independently of body mass index and HOMA-IR.  相似文献   

11.
Previous observations of reduced [3H]cyclic AMP binding in postmortem brain regions from bipolar affective disorder subjects imply cyclic AMP-dependent protein kinase function may be altered in this illness. To test this hypothesis, basal and stimulated cyclic AMP-dependent protein kinase activity was determined in cytosolic and particulate fractions of postmortem brain from bipolar disorder patients and matched controls. Maximal enzyme activity was significantly higher (104%) in temporal cortex cytosolic fractions from bipolar disorder brain compared with matched controls. In temporal cortex particulate fractions and in the cytosolic and particulate fractions of other brain regions, smaller but statistically nonsignificant increments in maximal enzyme activity were detected. Basal cyclic AMP-dependent protein kinase activity was also significantly higher (40%) in temporal cortex cytosolic fractions of bipolar disorder brain compared with controls. Estimated EC50 values for cyclic AMP activation of this kinase were significantly lower (70 and 58%, respectively) in both cytosolic and particulate fractions of temporal cortex from bipolar disorder subjects compared with controls. These findings suggest that higher cyclic AMP-dependent protein kinase activity in bipolar disorder brain may be associated with a reduction of regulatory subunits of this enzyme, reflecting a possible adaptive response of this transducing enzyme to increased cyclic AMP signaling in this disorder.  相似文献   

12.
13.
Sixty-three patients with endemic fluorosis (36 males/27 females; mean age 33.9 ± 8.6 years) and 45 age-, sex-, and body mass index-matched healthy controls (30 males/15 females; mean age 32.7 ± 8.8 years) were included in this study. Aortic stiffness indices, aortic strain (AS), aortic distensibility (AD), and aortic strain index (ASI) were calculated from the aortic diameters measured by echocardiography and blood pressure obtained by sphygmomanometry. The urine fluoride levels of fluorosis patients were significantly higher than control subjects as expected (1.9 ± 0.1 mg/l vs. 0.4 ± 0.1 mg/l, respectively; P < 0.001). AS and AD were significantly lower in fluorosis patients than in the controls (for AS 5.3 ± 3.6 vs. 8.0 ± 3.4%; P < 0.001 and for AD 0.2 ± 0.1 vs. 0.3 ± 0.1 cm2 dyn−1 10−3; P < 0.001, respectively). In contrast, signicantly higher ASI was observed in fluorosis patients than in the controls (3.4 ± 0.6 vs. 3.0 ± 0.4; P < 0.001, respectively). The results of our study demonstrate that elastic properties of ascending aorta are impaired in patients with endemic fluorosis.  相似文献   

14.
Ceruloplasmin (CP) is a 132kd cuproprotein which, together with transferrin, provides the majority of anti-oxidant capacity in serum. Increased iron deposition and lipid peroxidation in the basal ganglia of subjects with hereditary CP deficiency suggest that CP may serve as an anti-oxidant in the brain as well. The present study compared CP immunoreactivity in brain specimens from normal controls and subjects with neurodegenerative disorders (Alzheimer's disease [AD], Parkinson's disease [PD], progressive supranuclear palsy [PSP], and Huntington's disease [HD]) (n = 5 per group). The relative intensity of neuronal CP staining and the numbers of CP-stained neurons per 25x microscope field were determined in hippocampus (CA1, subiculum, and parahippocampal gyrus), parietal cortex, frontal cortex, substantia nigra, and caudate. CP was detected in both neurons and astrocytes in all specimens, and in senile plaques and occasional neurofibrillary tangles in AD brain. Neuronal CP staining intensity tended to increase in most AD brain regions, but was statistically significant vs controls only in the CA1 region of hippocampus (p = .016). Neuronal CP staining in brain specimens from other neurodegenerative disorders showed a slight but nonsignificant increase vs controls. The numbers of CP-stained neurons per field did not differ between the various neurodegenerative disorders and controls. These results suggest that a modest increase in neuronal CP content is present in the AD brain, and lesser elevations in neuronal CP occur in the other neurodegenerative disorders in this study. Though CP functions as both an acute phase protein and an anti-oxidant in peripheral tissues, whether it does so in the brain remains to be determined.  相似文献   

15.
Growing ruminants under extended dietary restriction exhibit compensatory growth upon ad libitum feeding, which is associated with increased feed efficiency, lower basal energy requirements, and changes in circulating concentrations of metabolic hormones. To identify mechanisms contributing to these physiological changes, 8-month-old steers were fed either ad libitum (control; n = 6) or 60–70% of intake of control animals (feed-restricted; n = 6) for a period of 12 weeks. All steers were fed ad libitum for the remaining 8 weeks of experimentation (realimentation). Liver was biopsied at days −14, +1, and +14 relative to realimentation for gene expression analysis by microarray hybridization. During early realimentation, feed-restricted steers exhibited greater rates of gain and feed efficiency than controls and an increase in expression of genes functioning in cellular metabolism, cholesterol biosynthesis, oxidative phosphorylation, glycolysis, and gluconeogenesis. Gene expression changes during feed restriction were similar to those reported in mice, indicating similar effects of caloric restriction across species. Based on expression of genes involved in cell division and growth and upregulation of genes encoding mitochondrial complex proteins in early realimentation, it was concluded that reduced hepatic size and increased mitochondrial function may contribute to improved feed efficiency observed during compensatory growth.  相似文献   

16.
17.
The major mental disorders, schizophrenia and bipolar disorder are substantially heritable. Recent genomic studies have identified a small number of common and rare risk genes contributing to both disorders and support epidemiological evidence that genetic susceptibility overlaps between them. Prompted by the question of whether risk genes cluster in specific molecular pathways or implicate discrete mechanisms we and others have developed hypothesis-free methods of investigating genome-wide association datasets at a pathway-level. The application of our method to the 212 experimentally-derived pathways in the Kyoto Encycolpaedia of Genes and Genomes (KEGG) database identified significant association between the cell adhesion molecule (CAM) pathway and both schizophrenia and bipolar disorder susceptibility across three GWAS datasets. Interestingly, a similar approach applied to an autistic spectrum disorders (ASDs) sample identified a similar pathway and involved many of the same genes. Disruption of a number of these genes (including NRXN1, CNTNAP2 and CASK) are known to cause diverse neurodevelopmental brain disorder phenotypes including schizophenia, autism, learning disability and specific language disorder. Taken together these studies bring the CAM pathway sharply into focus for more comprehensive DNA sequencing to identify the critical genes, and investigate their relationships and interaction with environmental risk factors in the expression of many seemingly different neurodevelopmental disorders.  相似文献   

18.
Ceruloplasmin (CP) is a 132kd cuproprotein which, together with transferrin, provides the majority of anti-oxidant capacity in serum. Increased iron deposition and lipid peroxidation in the basal ganglia of subjects with hereditary CP deficiency suggest that CP may serve as an anti-oxidant in the brain as well. The present study compared CP immunoreactivity in brain specimens from normal controls and subjects with neurodegenerative disorders (Alzheimer's disease [AD], Parkinson's disease [PD], progressive supranuclear palsy [PSP], and Huntington's disease [HD]) (n = 5 per group). The relative intensity of neuronal CP staining and the numbers of CP-stained neurons per 25x microscope field were determined in hippocampus (CA1, subiculum, and parahippocampal gyrus), parietal cortex, frontal cortex, substantia nigra, and caudate. CP was detected in both neurons and astrocytes in all specimens, and in senile plaques and occasional neurofibrillary tangles in AD brain. Neuronal CP staining intensity tended to increase in most AD brain regions, but was statistically significant vs controls only in the CA1 region of hippocampus (p = .016). Neuronal CP staining in brain specimens from other neurodegenerative disorders showed a slight but nonsignificant increase vs controls. The numbers of CP-stained neurons per field did not differ between the various neurodegenerative disorders and controls. These results suggest that a modest increase in neuronal CP content is present in the AD brain, and lesser elevations in neuronal CP occur in the other neurodegenerative disorders in this study. Though CP functions as both an acute phase protein and an anti-oxidant in peripheral tissues, whether it does so in the brain remains to be determined.  相似文献   

19.
It has been suggested that mood disorders and depressive status may be accompanied by lowered zinc status in the body, and adequate consumption of zinc increases a general perceived well-being. The main objective of this study was to assess the correlation between serum zinc concentrations and dietary zinc intakes with depression scores in university female students. In the first phase, Beck's depression questionnaire was applied in a random sampling of 308 selected 20–25-year-old female students (one third of total students in Ahvaz Jondi-Shapour University of Medical Sciences Golestan dormitories) to assess the major depressive disorder (MDD) scales. Then, in the second phase, 23 students who identified as having moderate and severe depression were selected as the case group, and 23 healthy age matched were chosen as the controls. Each of them completed a 12-item semiquantitative food frequency questionnaire containing the main food sources of zinc in the usual dietary patterns and also a 24-h food recall questionnaire to assure the daily zinc intakes. Daily zinc intakes were obtained by multiplying each portion size by its zinc content using food tables. A 5-ml blood sample was taken for further serum zinc status using flame atomic absorption spectrophotometry technique. Pearson's r was used to show the correlation between quantitative variables. Both daily zinc intake and serum zinc concentrations of MDD group were about two thirds of healthy index (p < 0.01). Depressed individuals used to eat lower servings of red meats and chicken as the main food sources of zinc in students' usual diets (p < 0.001). Consumption of other foods as the sources of zinc was not significantly different in two groups. A linear significant correlation between dietary zinc intakes and its serum levels was seen in samples (r = 0.62; p < 0.001) and MDD students (r = 0.55; p < 0.001). There was a linear inverse correlation between Beck questionnaire scores and serum zinc concentrations in all of the investigated students(r = -0.65; p < 0.001) and MDD girls (r = −0.71; p < 0.001). Beck questionnaire scores and diatary zinc intakes were also inversly correlated (r = −0.58; p < 0.001). However, no statistical correlation was seen between these two variables in MDD cases. In depressed female students, dietary zinc intake is correlated to its serum concentrations; however, the serum zinc levels are inversely correlated to depression scales. Consumption of the main dietary sources of zinc such as red meats and chicken should be encouraged in young depressed girls.  相似文献   

20.
Botryosphaeria rhodina DABAC P82 and Pleurotus pulmonarius CBS 664.97 were tested for their ability to grow and to degrade aromatic hydrocarbons in an aged contaminated soil. To evaluate the impact of indigenous microflora on the overall process, incubations were performed on both fumigated and nonfumigated soils. Fungal colonization by B. rhodina was unexpectedly lower in the fumigated than in the nonfumigated soil while the growth of P. pulmonarius showed an opposite response. Degradation performances and detoxification by both fungi in the nonfumigated soil were markedly higher than those observed in the fumigated one. Heterotrophic bacterial counts in nonfumigated soil augmented with either B. rhodina or P. pulmonarius were significantly higher than those of the corresponding incubation control (6.7 ± 0.3 × 108 and 8.35 ± 0.6 × 108, respectively, vs 9.2 ± 0.3 × 107). Bacterial communities of both incubation controls and fungal-augmented soil were compared by numerical analysis of denaturing gradient gel electrophoresis profiles of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA (rRNA) genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Besides increasing overall diversity, fungal augmentation led to considerable qualitative differences with respect to the pristine soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号