首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

2.
Purified fructose-1,6-bisphosphatase from Saccharomyces cerevisiae was phosphorylated in vitro by purified yeast cAMP-dependent protein kinase. Maximal phosphorylation was accompanied by an inactivation of the enzyme by about 60%. In vitro phosphorylation caused changes in the kinetic properties of fructose-1,6-bisphosphatase: 1) the ratio R(Mg2+/Mn2+) of the enzyme activities measured at 10 mM Mg2+ and 2 mM Mn2+, respectively, decreased from 2.6 to 1.2; 2) the ratio R(pH 7/9) of the activities measured at pH 7.0 and pH 9.0, respectively, decreased from 0.62 to 0.38, indicating a shift of the pH optimum to the alkaline range. However, the affinity of the enzyme for its inhibitors fructose-2,6-bisphosphate (Fru-2,6-P2) and AMP, expressed as the concentration required for 50% inhibition, was not changed. The maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase was 0.6-0.75 mol/mol of the 40-kDa subunit. Serine was identified as the phosphate-labeled amino acid. The initial rate of in vitro phosphorylation of fructose-1,6-bisphosphatase, obtained with a maximally cAMP-activated protein kinase, increased when Fru-2,6-P2 and AMP, both potent inhibitors of the enzyme, were added. As Fru-2,6-P2 and AMP did not affect the phosphorylation of histone by cAMP-dependent protein kinase, the inhibitors must bind to fructose-1,6-bisphosphatase in such a way that the enzyme becomes a better substrate for phosphorylation. Nevertheless, Fru-2,6-P2 and AMP did not increase the maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase beyond that observed in the presence of cAMP alone.  相似文献   

3.
The effect of chaotropic anions was studied on processes that constitute the chloroplast fructose-1,6-bisphosphatase reaction, i.e. enzyme activation and catalysis. The specific activity of chloroplast fructose-1,6-bisphosphatase was enhanced by preincubation with dithiothreitol, fructose 1,6-bisphosphate, Ca2+, and a chaotropic anion. When chaotropes were ranked in the order of increasing concentrations required for maximal activation they followed a lyotropic (Hofmeister) series: SCN- less than Cl3C-COO- less than ClO4- less than I- less than Br- less than Cl- less than SO4(2-). On the contrary, salts inhibited the catalytic step. The stimulation of chloroplast fructose-1,6-bisphosphatase by chaotropic anions arose from a decrease of the activation kinetic constants of both fructose 1,6-bisphosphate and Ca2+; on the other hand, in catalysis neutral salts caused a decrease of kcat because the S0.5 for both fructose 1,6-bisphosphate and Mg2+ remained unaltered. The molecular weight of chloroplast fructose-1,6-bisphosphatase did not change after the activation by incubation with dithiothreitol, fructose 1,6-bisphosphate, Ca2+, and a chaotrope; consequently, the action of these modulators altered the conformation of the enzyme. Modification in the relative position of aromatic residues of chloroplast fructose-1,6-bisphosphatase was detected by UV differential spectroscopy. In addition, the concerted action of modulators made the enzyme more sensitive to (a) trypsin attack and (b) S-carboxymethylation by iodoacetamide. These results provide a new insight on the mechanism of light-mediated regulation of chloroplast fructose-1,6-bisphosphatase; concurrently to the action of a sugar bisphosphate, a bivalent cation, and a reductant, modifications of hydrophobic interactions in the structure of chloroplast fructose-1,6-bisphosphatase play a crucial role in the enhancement of the specific activity.  相似文献   

4.
A purification procedure for rat hepatic fructose-1,6-bisphosphatase, described earlier, has been improved, resulting in an enzyme preparation with a neutral pH optimum and with both phosphorylatable serine residues present. The subunit Mr was 40,000. Phosphorylation in vitro with cyclic AMP-dependent protein kinase resulted in the incorporation of 1.4 mol of phosphate/mol of subunit and led to an almost 2-fold decrease in apparent Km for fructose-1,6-bisphosphate. In contrast to yeast fructose-1,6-bisphosphatase, fructose-2,6-bisphosphate had no effect on the rate of phosphorylation or dephosphorylation of the intact enzyme. The effects of the composition of the assay medium, with regard to buffering substance and Mg2+ concentration, on the apparent Km values of phosphorylated and unphosphorylated enzyme were investigated. The kinetics of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase were studied with special reference to the inhibitory effects of adenine nucleotides and fructose-2,6-bisphosphate. Unphosphorylated fructose-1,6-bisphosphatase was more susceptible to inhibition by both AMP and fructose 2,6-bisphosphate than phosphorylated enzyme, at high and low substrate concentrations. Both ATP and ADP had a similar effect on the two enzyme forms, ADP being the more potent inhibitor. Finally, the combined effect of several inhibitors at physiological concentrations was studied. Under conditions resembling the gluconeogenic state, phosphorylated fructose-1,6-bisphosphatase was found to have twice the activity of the unphosphorylated enzyme.  相似文献   

5.
Fructose-1,6-bisphosphatase purified from Saccharomyces cerevisiae is phosphorylated in vitro by a cAMP-dependent protein kinase. The phosphorylation reaction incorporates 1 mol of phosphate/mol of enzyme and is greatly stimulated by fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate acts upon fructose-1,6-bisphosphatase, not on the protein kinase. The phosphorylation of fructose 1,6-bisphosphatase lowers its activity by about 50%. The characteristics of the phosphorylation reaction in vitro show that this modification is responsible for the inactivation of fructose-1,6-bisphosphatase observed in vivo.  相似文献   

6.
In this minireview the properties and characteristics of plant fructose-1,6-bisphosphatases (D-fructose-1,6-bisphosphatase 1-phosphohydrolase, EC 3.1.3.11) are discussed. The properties and characteristics of the chloroplastic and cytoplasmic forms of the enzyme are reviewed. For purposes of comparison some reference is made to fructose-1,6-bisphosphatases from other species.  相似文献   

7.
The activation of chloroplast fructose-1,6-bisphosphatase by fructose-1,6-bisphosphate, Ca2+, DTT and chloroplast thioredoxin-f is prevented by either spermidine or spermine; on the contrary, other amino compounds do not replace polyamines in this reversible effect. On the other hand, neither spermidine nor spermine modify the catalysis of chloroplast fructose-1,6-bisphosphatase. The effect of spermidine, but not the effect of spermine, is reversed by increasing the concentration of Ca2+ in the activation; higher concentrations of Fructose-1,6-bisphosphate or thioredoxin-f do not restore the control activity. The present results suggest that other regulatory mechanisms may control the activation of fructose-1,6-bisphosphatase in chloroplasts.  相似文献   

8.
The Pyrococcus furiosus fbpA gene was cloned and expressed in Escherichia coli, and the fructose-1,6-bisphosphatase produced was subsequently purified and characterized. The dimeric enzyme showed a preference for fructose-1,6-bisphosphate, with a K(m) of 0.32 mM and a V(max) of 12.2 U/mg. The P. furiosus fructose-1,6-bisphosphatase was strongly inhibited by Li(+) (50% inhibitory concentration, 1 mM). Based on the presence of conserved sequence motifs and the substrate specificity of the P. furiosus fructose-1,6-bisphosphatase, we propose that this enzyme belongs to a new family, class IV fructose-1,6-bisphosphatase.  相似文献   

9.
A substance in the crude preparation of NADP has been found, which activates snake muscle fructose-1,6-bisphosphatase at pH 9.2 and inhibits the enzyme at pH 7.5. After isolation and extensive characterization, the substance has been determined to be AMP. The activation depends on the concentrations of Mg2 and could be observed only at concentrations above 1 mmol/L. In the presence of AMP, snake muscle fructose-1,6-bisphosphatase resembles an alkaline enzyme. Kinetic studies indicate that AMP and Mg2 competitively regulate the activity of the enzyme. AMP releases the inhibition of Mg2 at high concentration at alkaline pH. It has been reported that fructose-1,6-bisphosphatase with a pH optimum in the alkaline region is caused by limited proteolysis. AMP is also able to make fructose-1,6-bisphosphatase to be an alkaline enzyme. This finding indicates that proteolysis may not be the only reason for shift of the optimum pH of fructose-1,6-bisphosphatase to alkaline side and it may imply some significanc  相似文献   

10.
A substance in the crude preparation of NADP+ has been found,which activates snake muscle fructose-1,6-bisphosphatase at pH 9.2 and inhibits the enzyme at pH 7.5.After isolation and extensive characterization,the substance has been determined to be AMP.The activation depends on the concentrations of Mg2+ and could be observed only at concentrations above 1 mmol/L.In the presence of AMP,snake muscle fructose-1,6-bisphosphatase resembles an alkaline enzyme.Kinetic studies indicate that AMP and Mg2+ competitively regulate the activity of the enzyme.AMP releases the inhibition of Mg2+ at high concentration at alkaline pH.It has been reported that fructose-1,6-bisphosphatase with a pH optimum in the alkaline region is caused by limited proteolysis.AMP is also able to make fructose-1,6-bisphosphatase to be an alkaline enzyme.This finding indicates that proteolysis may not be the only reason for shift of the optimum pH of fructose-1,6-bisphosphatase to alkaline side and it may imply some significance in physiological regulation.  相似文献   

11.
Chloroplast fructose-1,6-bisphosphatase hysteresis in response to modifiers was uncovered by carrying out the enzyme assays in two consecutive steps. The activity of chloroplast fructose-1,6-bisphosphatase, assayed at low concentrations of both fructose-1,6-bisphosphatase and Mg2+, was enhanced by preincubating the enzyme with dithiothreitol, thioredoxin f, fructose 1,6-bisphosphate, and Ca2+. In the time-dependent activation process, fructose 1,6-bisphosphate and Ca2+ could be replaced by other sugar biphosphates and Mn2+, respectively. Once activated, chloroplast fructose-1,6-bisphosphatase hydrolyzed fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate in the presence of Mg2+, Mn2+, or Fe2+. The A0.5 for fructose 1,6-bisphosphate (activator) was lowered by reduced thioredoxin f and remained unchanged when Mg2+ was varied during the assay of activity. On the contrary, the S0.5 for fructose 1,6-bisphosphate (substrate) was unaffected by reduced thioredoxin f and depended on the concentration of Mg2+. Ca2+ played a dual role on the activity of chloroplast fructose-1,6-bisphosphatase; it was a component of the concerted activation and an inhibitor in the catalytic step. Provided dithiothreitol was present, the activating effectors were not required to maintain the enzyme in the active form. Considered together these results strongly suggest that the regulation of fructose-1,6-bisphosphatase in chloroplast occurs at two different levels, the activation of the enzyme and the catalysis.  相似文献   

12.
Fructose-1,6-bisphosphatase is one of the regulatory enzymes of gluconeogenesis in kidney cortex. The effect of ribose 1,5-bisphosphate on fructose-1,6-bisphosphatase purified from rat kidney cortex was studied. Rat kidney cortex, fructose-1,6-bisphosphatase exhibited hyperbolic kinetics with regard to its substrate, but the activity was inhibited by ribose 1,5-bisphosphate at nanomolar concentrations. The inhibitory effect of ribose 1,5-bisphosphate on the fructose-1,6-bisphosphatase was enhanced in the presence of AMP, one of the inhibitors of fructose-1,6-bisphosphatase. Fructose-2,6-bisphosphate, which is an inhibitor of fructose-1,6-bisphosphatase, inhibited rat kidney cortex fructose-1,6-bisphosphatase activities at a low concentration of fructose-1,6-bisphosphate but a high concentration of fructose-1,6-bisphosphate relieved fructose-1,6-bisphosphatase from fructose-2,6-bisphosphate-dependent inhibition. On the contrary, fructose-1,6-bisphosphate was not effective for the recovery of fructose-1,6-bisphosphatase from ribose 1,5-bisphosphate-dependent inhibition. These results suggest that ribose 1,5-bisphosphate is a potent inhibitor and is involved in the regulation of fructose-1,6-bisphosphatase in rat kidney cortex.  相似文献   

13.
Two kinetically and thermodynamically distinct thiol/disulfide redox changes are observed during the reversible thioredoxin fb-catalyzed reduction and oxidation of spinach chloroplast fructose-1,6-bisphosphatase by dithiothreitol. The two processes, which occur at different rates and with different equilibrium constants, can be observed independently in either the reduction (activation) or oxidation (inactivation) direction by assaying the enzyme activity at different magnesium and fructose-1,6-bisphosphate concentrations. The two processes, in both the reduction and oxidation directions, are kinetically zero-order in dithiothreitol concentration and first-order in thioredoxin fb concentration. The rate-limiting step in both directions is the reaction of fructose-1,6-bisphosphatase with thioredoxin. The more kinetically and thermodynamically favored reduction of fructose-1,6-bisphosphatase lowers the apparent Km for fructose-1,6-bisphosphate while the less favorable process lowers the Km for magnesium. Both of the thiol/disulfide redox changes reach equilibrium in redox buffers consisting of different ratios of reduced to oxidized dithiothreitol (Ered + DTTox in equilibrium Eox + DTTred). The equilibrium constants (Kox) are 0.12 +/- 0.02 and 0.39 +/- 0.08 for the fast and slow reduction processes at pH 8.0. The equilibrium constants for oxidation of the enzyme by glutathione disulfide (Ered + GSSG in equilibrium Eox + 2 GSH) can be estimated to be approximately 2400 and 7800 M, respectively. Thermodynamically the fructose-1,6-bisphosphatase/thioredoxin fb system is extremely sensitive to oxidation, comparable to disulfide bond formation in extracellular proteins.  相似文献   

14.
R.C. Leegood  D.A. Walker   《BBA》1980,593(2):362-370
1. The aim of this work was to investigate the mechanism of dark inactivation of fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) in isolated intact chloroplasts of Triticum aestivum.

2. Dark inactivation of the enzyme, which was rapid under aerobic conditions, was prevented under anaerobic conditions when chloroplasts were incubated in the absence of an electron acceptor. Electron acceptors such as oxaloacetate readily brought about inactivation under anaerobic conditions whether chloroplasts were illuminated or in the dark. Inactivation of the enzyme also occurred if illuminated or darkened anaerobic chloroplasts were exposed to oxygen.

3. Pyocyanine, which catalyses a cyclic electron flow around Photosystem I, also caused inactivation of the enzyme in illuminated, anaerobic chloroplasts.

4. It is proposed that the activity of fructose-1,6-bisphosphatase is regulated by the availability of electrons, and thus by electron acceptors, and that dark inactivation may occur by a direct reversal of the activation process.  相似文献   


15.
Fructose-1,6-bisphosphatase was precipitated with purified rabbit antiserum from extracts of 32P-orthophosphate labelled yeast cells, submitted to SDS polyacrylamide gel electrophoresis, extracted from the gels and counted for radioactivity due to 32P incorporation. Fructose-1,6-bisphosphatase from glucose starved yeast cells contained a very low 32P label. During 3 min treatment of the glucose starved cells with glucose the 32P-label increased drastically. Subsequent incubation of the cells in an acetate containing, glucose-free medium led to a label which was again low. Analysis for phosphorylated amino acids in the immunpprecipitated fructose-1,6-bisphosphatase protein from the 3 min glucose-inactivated cells exhibited phospho-serine as the only labelled phosphoamino acid. These data demonstrate a phosphorylation of a serine residue of fructose-1,6-bisphosphatase during this 3 min glucose treatment of glucose starved cells. A concomitant about 60 % inactivation of the enzyme had been shown to occur. The data in addition show a release of the esterified phosphate from the enzyme upon incubation of cells in a glucose-free medium, a treatment which leads to peactivation of enzyme activity. A protein kinase and a protein phosphatase catalysing this metabolic interconversion of fructose-1,6-bisphosphatase are postulated. It is assumed that metabolites accumulating after the addition of glucose exert a positive effect on the kinase activity and/or have a negative effect on the phosphatase activity. A role of the enzymic phosphorylation of fructose-1,6-bisphosphatase in the initiation of complete proteolysis of the enzyme during “catabolite inactivation” is discussed.  相似文献   

16.
The properties of dephospho- and phosphofructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae and of two mutant enzymes in which the phosphorylatable Ser11 had been changed by site-directed mutagenesis (Ser----Ala and Ser----Asp) were studied to clarify the role of cyclic AMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase. The mutant enzymes and wild type Ser11 fructose-1,6-bisphosphatase were overexpressed and purified to homogeneity. Phosphofructose-1,6-bisphosphatase was prepared by in vitro phosphorylation. The comparison of the properties of the above enzymes demonstrated that all four had similar maximum activity. However, the phosphoenzyme was about 3-fold more sensitive to AMP and fructose 2,6-bisphosphate inhibition than the dephosphoenzyme, suggesting that regulation operates in vivo by this mechanism, leading to decreased enzyme activity. The purified mutant enzymes Ala11 and Asp11 exhibited properties closely similar to those of dephospho- and phosphofructose-1,6-bisphosphatase, respectively. These results indicate that the functional group at residue 11 is an important factor in the regulation of fructose-1,6-bisphosphatase activity and that Ser(P) can be functionally substituted by Asp in this enzyme.  相似文献   

17.
The modern literature data about common characteristics, genetic and molecular-biological properties of main enzyme of gluconeogenesis (fructose-1,6-bisphosphatase) were analyzed. Regulation of fructose-1,6-bisphosphatase activity (stimulation and inhibition) by fructose-1,6-bisphosphate, fructose-2,6-bisphosphate, phosphoenolpyruvate, AMP and by metal ions are discussed. It was concluded that apart from the fact that fructose-1,6-bisphosphatase was intensively investigated, this enzyme from Mollicutes failed to be studied sufficiently.  相似文献   

18.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

19.
K N Ekdahl  P Ekman 《FEBS letters》1984,167(2):203-209
Rat liver fructose-1,6-bisphosphatase was partially phosphorylated in vitro and separated into unphosphorylated and fully phosphorylated enzyme. The effects of fructose 2,6-bisphosphate and AMP on these two enzyme forms were examined. Unphosphorylated fructose-1,6-bisphosphatase was more easily inhibited by both effectors. Fructose 2,6-bisphosphate affected both K0.5 and Vmax, while the main effect of AMP was to lower Vmax. Fructose 2,6-bisphosphate and AMP together acted synergistically to decrease the activity of fructose-1,6-bisphosphatase, and since unphosphorylated and phosphorylated enzyme forms are affected differently, this might be a way to amplify the effect of phosphorylation.  相似文献   

20.
In this work we analyze the affinity relationship between photosynthetic fructose-1,6-bisphosphatase and ferredoxin and thioredoxin from spinach leaves, two components of the proposed light-activation system of this enzyme, using affinity techniques on ferredoxin- and thioredoxin-Sepharose columns. Oxidized and reduced ferredoxin did not show enzyme affinity, whereas thioredoxin, both the oxidized and the dithiothreitol-reduced form, exhibited a strong bisphosphatase affinity at pH 7.5; this thioredoxin/enzyme affinity appears diminished at pH 8.2. When the affinity experiments were performed in the presence of 5 mM Mg2+, only 30% and 12% of the bisphosphatase remained bound to the thioredoxin-Sepharose at pH 7.5 and 8.0, respectively; these percentages were reduced to 6% when the Mg2+ concentration increased to 10 mM. These results suggest that a rise of stromal pH and Mg2+ concentration can account for a loosening of the thioredoxin/bisphosphatase linkage, which could be of physiological significance in the dark-light transition. Studies on the nature of the chemical groups responsible for the affinity have shown that the thioredoxin/bisphosphatase linkage is concerned with the existence of hydrophobic clusters. We have found no difference in the behaviour of the chloroplastic thioredoxins f and m, and the cytoplasmic ones cf and cm. These results support the existence of an in vivo thioredoxin/fructose-1,6-bisphosphatase interaction, in accordance with the light-activation mechanism by the ferredoxin-thioredoxin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号