首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cholesterol content of rat liver plasma membranes was manipulated using either cholesterol-free or cholesterol-enriched liposomes. Removal of cholesterol from the membranes led to a marked increase in 5'-nucleotidase activity. However, increase in cholesterol content failed to exert any significant effect on 5'-nucleotidase activity. Arrhenius plots of the activity of the native enzyme exhibited a break at around 28 degrees C with the activation energy of the reaction less above this temperature than below. In cholesterol-depleted membranes a single break at around 26 degrees C was observed with activation energies greater above this temperature than below it. In cholesterol-enriched membranes Arrhenius plots were linear over the range examined. It is suggested that the lipid environment of the external half of the bilayer only influences 5'-nucleotidase activity in these membranes and that cholesterol exerts controlling effects on both the activity and conformation of the enzyme in native membranes.  相似文献   

2.
I Wada  S Eto  M Himeno  K Kato 《Journal of biochemistry》1987,101(5):1077-1085
5'-Nucleotidase was found in purified rat liver tritosomes. When tritosomes were subfractionated into the membrane and soluble contents fractions, 73% of the total 5'-nucleotidase activity was found in the membrane fraction and 24% in the soluble contents fraction. Immunoblotting using specific polyclonal antibodies against the rat liver plasma membrane 5'-nucleotidase showed that the mobilities on SDS-polyacrylamide gel electrophoresis of both 5'-nucleotidases in the membrane and contents fractions were identical to that of the enzyme in the plasma membranes (Mr = 72,000). 5'-Nucleotidases in the membrane and contents fractions were sensitive to neuraminidase and converted into a form that was 4 kDa smaller after digestion, as observed in the case of plasma membrane enzyme. 5'-Nucleotidases, both from the membrane and contents fractions, were purified using immunoaffinity chromatography, and the isoelectric points, heat stability, and oligomeric structure of the purified enzymes were compared. Isoelectric focusing and the heat stability test indicated the resemblance of the soluble enzyme to the membrane-bound enzyme. However, the membrane-bound enzyme aggregated in the absence of Triton X-100, whereas the soluble enzyme behaved as a dimer. The topography of 5'-nucleotidase in the tritosomal membranes was studied using antibodies against 5'-nucleotidase and neuraminidase treatment. The inhibition of 5'-nucleotidase were not observed in the intact tritosomal fraction until the tritosomes had been disrupted by osmotic shock. These results show that the active sites and the oligosaccharide chains of 5'-nucleotidase are located on the inside surface of the tritosomal membranes.  相似文献   

3.
Cell cultures of adult rat liver produced two distinct morphologic cell types: epithelial cells polygonal in shape and growing in nests of closely apposed cells, and fibroblast cells stellate in shape with little cell-cell contact at low density growth, but aligning in parallel arrays at high density. These two morphologic variants displayed dramatic differences in histochemically demonstrable 5'-nucleotidase activities. Fibroblast cells exhibited great activity throughout the cytoplasm with no concentration of activity in the cell membrane. The lesser activity in epithelial cells was concentrated on the cell membrane. The importance of this finding to the interpretation of data derived from experiments with whole liver homogenates is discussed.  相似文献   

4.
The controversial subject of mitochondrial 5'-nucleotidase in the liver was studied employing density gradient fractionation combined with a method for analyzing the distribution profiles of marker enzymes based on multiple regression analysis. Triton WR-1339 was used to improve the separation of mitochondria from lysosomes by the gradient centrifugation technique. Adenosine production was examined further using acetate to increase intramitochondrial AMP, and thus adenosine production, in incubations with gradient centrifugation-purified mitochondria. Distribution analysis of the crude homogenate showed that 5'-nucleotidase activity exists in the mitochondrial fraction. To increase the resolution of this approach with respect to mitochondria, a crude mitochondrial fraction was also studied. In this case the relative mitochondrial activity decreased but 5'-nucleotidase activity was still clearly detectable. The mitochondrial 5'-nucleotidase exhibited a Km of 94 microM and a Vmax of 31 nmol/min per mg protein for AMP. The kinetic data for the Mg2+, ATP, ADP and AOPCP sensitivity of the enzyme showed that it differs from the plasma membrane, lysosome and cytosol 5'-nucleotidases. AOPCP was only a moderate inhibitor, and ATP was a more potent inhibitor than ADP at a 1 mM concentration. The enzyme also showed a requirement of Mg2+. Acetate caused the conversion of intramitochondrial adenylates to AMP and the formation of adenosine. Adenosine concentration increased in the extramitochondrial space in a time-dependent manner, but only trace amounts of nucleotides were detected. The data show that 5'-nucleotidase activity producing adenosine exists in rat liver mitochondria and a concentration-dependent adenosine output from mitochondria by diffusion or facilitated diffusion is also suggested.  相似文献   

5.
5'-Nucleotidase from rat heart   总被引:7,自引:0,他引:7  
Y Naito  J M Lowenstein 《Biochemistry》1981,20(18):5188-5194
5'-Nucleotidase has been extracted from rat heart and purified to apparent homogeneity. The enzyme is a glycoprotein. Gel electrophoresis in the presence of sodium dodecyl sulfate indicates that the apparent molecular weight of the subunit is 74 000 at several different gel concentrations. Cross-linking of the native enzyme with dimethylpimelimidate followed by gel electrophoresis shows that the enzyme is a dimer. The enzyme hydrolyzes all nucleoside 5'-monophosphates tested. A comparison of Vmax/Km for 14 different substrates shows that AMP is the best substrate. The enzyme shows lowest Km values for AMPS, AMP, isoAMP, GMP, and IMP. It shows no activity with nucleoside 2'- and 3'-monophosphates, sugar phosphates, and p-nitrophenyl phosphate, even when tested at high enzyme concentrations. The optimum activity of the enzyme occurs at pH 7.5 with AMP as substrate. Above this pH, buffer ions affect the activity in a complex manner, a second optimum being observed under some conditions. Magnesium ions activate the enzyme above pH 7.5 in the presence of some buffer ions but not of others. Magnesium ions show only a slight activation when the reaction is run in diethanolamine buffer, pH 9.5, at 30 degrees C; the activation in this buffer is considerably greater when the reaction is run at 37 degrees C. The enzyme is strongly inhibited by free ADP, maximum inhibition occurring below pH 6. The ADP inhibition is diminished as the pH is raised above 6, becoming negligible above pH9. The enzyme is inhibited by EDTA. The inhibition is partially reversed when the EDTA is removed from the enzyme by gel filtration. This as well as other evidence indicates that the enzyme contains a tightly bound metal ion.  相似文献   

6.
Interaction of rat liver lysosomal membranes with actin   总被引:1,自引:3,他引:1       下载免费PDF全文
Membranes were prepared from lysosomes purified 80-fold by centrifugation in a discontinuous metrizamide gradient. When salt- washed membranes were combined with rabbit muscle actin, an increase in viscosity could be measured using a falling ball viscometer. The lysosomal membrane-actin interaction was actin- and membrane- concentration dependent and appeared to be optimal under presumed physiological conditions (2 mM MgCl2, 1 mM MgATP, neutral pH, and free calcium concentration less than 10(-8) M). The actin cross-linking activity of the membrane was optimal at pH 6.4. The interaction was maximal between 10(-7) and 10(-9) M free calcium ions and inhibited by approximately 50% at concentrations of calcium greater than 0.5 x 10(- 7) M. The actin-lysosomal membrane interaction was destroyed if the membranes were pretreated with Pronase, or if the membranes were purified in the absence of protease inhibitors. The interaction was not destroyed if membranes were washed with high salt or extracted with KCl and urea. In addition, a sedimentation assay for the actin-lysosomal membrane interaction was also performed to corroborate the viscometry data. The results suggest the existence of an integral lysosomal membrane actin-binding protein.  相似文献   

7.
Basic carboxypeptidase activity was released from human placental membranes on treatment with phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. The enzyme was successively purified to homogeneity by SDS-polyacrylamide gel electrophoresis. The molecular nature and some catalytic properties of the purified enzyme revealed that it is identical with recently described basic carboxypeptidase M (R.A. Skidgel et al. J. Biol. Chem. 264 (4) 1989 2236-2241).  相似文献   

8.
GTP-binding proteins have been identified on the membranes of highly purified dextran-filled lysosomes (dextranosomes) and Triton-filled lysosomes (tritosomes) obtained from rat liver. Autoradiography of blots of lysosomal membrane proteins incubated with [alpha-32P]GTP revealed the presence of several specific GTP-binding proteins with a relative molecular mass (M(r)) predominantly in the range of 26-30 kDa. These GTP-binding proteins migrated slower in polyacrylamide gels than purified c-Ha-ras protein expressed in E. coli, whose apparent M(r) was 23 kDa in the same blot. The relative contents of GTP-binding proteins in lysosomal membranes were comparable or greater than that of plasma membranes and of microsomes. Chemical extraction showed that lysosomal GTP-binding proteins were more tightly associated with the membranes than with microsomal GTP-binding proteins. The possible involvement of lysosomal GTP-binding proteins in cellular functions including vacuolar (lysosomal) acidification and organellar dynamics are discussed.  相似文献   

9.
It has been shown for the first time that lysosomal (tritosomal) membranes of rat liver contain enzymes that are responsible for the deacylation-reacylation of phospholipids; their activity optimum lies at pH 7.0. Deacylation of lysosomal membrane phospholipids is controlled by a cascade of enzymatic reactions involving Ca2(+)-dependent phospholipase A1 which exhibits the maximal activity at 2.5 mM Ca2+ and at neutral values of pH, as well as lysophospholipase. Reacylation of lyso-derivatives of phospholipids is catalyzed by Mg2(+)-activated oleoyl-CoA:lysophosphatidylcholine acyltransferase having an activity optimum at pH 7.2.  相似文献   

10.
Acid phosphatase associated with rat liver lysosomal membranes (M-APase) was purified about 4,200-fold over the homogenate with 10% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence of SDS. The purification procedure included; preparation of lysosomal membranes, solubilization of the membranes with 1% Triton X-100, immunoaffinity chromatography, and gel filtration with FPLC equipped with a Sephacryl S-300HR column. The molecular weight, estimated by gel filtration through TSK SW 3000G, was approximately 320K and SDS gel electrophoresis showed that the enzyme is composed of four identical subunits with an apparent molecular weight of 67K. The enzyme contains about 24.3% carbohydrate consisting of mannose, galactose, fucose, N-acetylglucosamine, N-acetylgalactosamine, and N-acetylneuraminic acid in a molar ratio of 38:20:5:36:4:11, respectively. In addition, three soluble forms of acid phosphatase (C-APase I, II, and III) in lysosomal contents were separated from rat liver lysosomal contents with DEAE-Sephacel. These three enzymes were also purified using immunoaffinity chromatography followed by gel filtration. C-APase I, II, III, and M-APase have isoelectric points of 7.7-8.2, 6.6-7.0, 5.7-6.7, and 3.4-3.8, respectively. All four APases are sensitive to endo-beta-N-acetylglucosaminidase H. However, only C-APase III and M-APase are digestible with neuraminidase. Susceptibility of M-APase to neuraminidase in intact tritosomes was examined to study the topography of M-APase in tritosomal membranes. Neuraminidase susceptibility of M-APase was not observed in the intact tritosomes until the tritosomes had been disrupted by osmotic shock.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Binding of arylsulphatase B to isolated rat liver lysosomal membrane has been studied at 37‡C. The binding is strongly pH-dependent and is governed by ionic strength of the medium. Experimental evidence is given for the ability of the enzyme to dissociate from the firmly formed membrane-enzyme complex. The dissociation rate is greatly accelerated by raising the buffer molarity. Neuraminidase-treatment of the membrane causes significant reduction in its binding ability to the enzyme. This suggests that sialic acid groups participate, presumably by maintaining surface negativity of the membrane, at a stage of enzymemembrane interaction process which precedes the internalization of the lysosomal enzymes in the lysocomes.  相似文献   

12.
Membrane-associated and soluble forms of folate binding protein (FBP) have been identified in mammalian tissues and biological fluids. Despite their solubility differences, these two forms are functionally similar, immunologically cross-reacting, and have the same apparent molecular weights. In this study we demonstrate, for the first time, that the membrane FBP of cultured human KB cells contains a glycosyl-phosphatidylinositol (GPI) tail which is responsible for its hydrophobic properties and distinguishes it from the soluble FBP released into the medium. Treatment of the purified membrane FBP with phospholipase C specific for phosphatidylinositol (PI-PLC) removed the GPI tail and converted it to the soluble form without a change in apparent Mr by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, virtually all of the folate binding sites on the plasma membrane of the intact cells were released as soluble, functional FBP following treatment with PI-PLC. The GPI tail contained 1-O-alkyl-2-O-acylglycerol as a mixture of fatty alcohols in ether linkage at C1 of the glycerol backbone and almost exclusively docosanoic acid (22:0) as the fatty acid on C2. The inositol also contained a mixture of fatty acids (16:0, 18:0, 18:1, 20:4, 22:0) located on a site other than the C2 position since the FBP was susceptible to PI-PLC cleavage. After nitrous acid deamination, the aqueous portion of the FBP contained covalently bound fatty acids, predominantly palmitate (16:0) and stearate (18:0), indicating the presence of additional acyl groups attached to the peptide in the form of amide, ester, or thioester linkage.  相似文献   

13.
Glycosyl-phosphatidylinositol (GPI) anchored proteins are surveyed in two insulin sensitive cell types by surface labeling and phospholipase C-induced release into the medium. Serum starvation selectively increases both the number and intensity of a subset of GPI-anchored proteins. After serum starvation, loss of cell-surface GPI-anchored proteins is induced acutely by either serum re-exposure or insulin, suggesting that hormonal treatment may promote the release of these proteins from the cell surface.  相似文献   

14.
Dipeptidyl peptidase IV (m-DPP IV) in rat liver lysosomal membranes was purified about 50-fold over the lysosomal membranes with 38% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence and in the absence of SDS. The enzyme amounts to about 3% of lysosomal membrane protein constituents. The purification procedures included: extraction of lysosomal membranes by Triton X-100, WGA-Sepharose affinity chromatography, hydroxylapatite chromatography, ion exchange chromatography, and preparative polyacrylamide gel electrophoresis. The enzyme (M(r) 240,000) is composed of two identical subunits with an apparent molecular weight of 110,000. The enzyme contains about 12.4% carbohydrate and the carbohydrate moiety was composed of mannose, galactose, fucose, N-acetylglucosamine, and neuraminic acid in a molar ratio of 14:17:2:24:11. Susceptibility to neuraminidase and immunoreactivity of the enzyme in intact tritosomes were examined to study the topology of the enzyme in tritosomal membranes. Neuraminidase susceptibility and immunoreactivity of the enzyme were not observed in the intact tritosomes until the tritosomes had been disrupted by osmotic shock. This result indicated that both the oligosaccharide chains and the main protein portion of the enzyme are on the inside surface of the tritosomal membranes. Subcellular localization of DPP IV was determined by means of enzyme immunoassay, which indicated that bile canalicular membranes and lysosomal membranes are the major sites of localization, and DPP IV activity in lysosomes was separated into a membrane bound form (60%) and a soluble form (40%). Immunoelectron microscopy clearly confirmed that DPP IV occurs not only in the bile canalicular domain but also in the lysosomes of rat liver.  相似文献   

15.
Normal rat liver lysosomal membranes in the form of membrane vesicles have been purified using Percoll density gradient centrifugation. Lysosomes (density = 1.111) were purified approximately 63 +/- 12-fold (mean +/- standard deviation, n = 5) using a gradient of Percoll made isotonic with sucrose and buffered to pH 7.0. These lysosomes were then exposed to 10 mM methionine methyl ester, pH 7.0, the uptake of which resulted in swelling and breakage of the lysosomes with subsequent vesicle formation. These vesicles (density = 1.056) were further separated from residual mitochondrial and plasma membrane enzyme activities using a second Percoll density gradient. Marker enzyme analysis and electron microscopy indicated that the lysosomal membranes were essentially free of both beta-hexosaminidase, a soluble lysosomal enzyme, and contaminating organelles. The specific activity of lysosomal ATPase in the lysosomal membranes was fourfold greater than in the intact lysosomes.  相似文献   

16.
Sialoglycoprotein with a molecular mass of 85 kDa (LGP85) was purified from rat liver lysosomal membranes with a 0.9% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence and in the absence of SDS. The purification procedures included: preparation of lysosomal membranes, elimination of LGP107 and LGP96 with immunoaffinity columns, WGA-Sepharose affinity chromatography, hydroxylapatite chromatography, and preparative polyacrylamide gel electrophoresis. LGP85 contains about 22.8% carbohydrate and the carbohydrate moiety is composed of mannose, galactose, fucose, glucosamine, galactosamine, and neuraminic acid, in a molar ratio of 40:20:2:23:3:13. Susceptibility to neuraminidase and immunoreactivity of the protein in intact tritosomes were examined to study the topology of the protein in tritosomal membranes. Neuraminidase susceptibility and immunoreactivity of the protein were not observed in intact tritosomes until the tritosomes had been disrupted by osmotic shock. These observations suggest that both oligosaccharide chains and the main protein portion of the protein are located on the interior surface of the tritosomal membranes. Subcellular localization of LGP85 was determined using enzyme immunoassay. The lysosomes seem to be the major location. LGP85 in the lysosomes was divided into the membrane bound form (90%) and the soluble form (10%). Immunoelectron microscopy clearly confirmed that the localization of LGP85 is mainly confined to lysosomes.  相似文献   

17.
Specific location of 5'-nucleotidase in the heart has been uncertain, some authors citing evidence for an exclusively non-myocyte location, while other data point to the existence of cytoplasmic and membrane-bound fractions. Single myocytes isolated from mature rat heart, and free of endothelial or interstitial cells, have been used to establish that muscle cells of the myocardium are rich in 5'-nucleotidase, exhibiting activity sufficient to account for the total myocardial content of this enzyme. All 5'-nucleotidase is accessible to extracellular AMP. Inhibitors of 5'-nucleotidase and adenosine transport have been used to establish that only the adenosine component of adenine nucleotides is taken up by myocytes, but hydrolysis of AMP by 5'-nucleotidase does not commit the adenosine formed to transport across the sarcolemmal membrane. Myocytes also have ecto-phosphatases which hydrolyse ADP and ATP.  相似文献   

18.
Addition of NADH, but not NAD+ or NADPH, to rat liver plasma membranes resulted in the increase of their 5'-nucleotidase activity. NADH-dependent activation of 5'-nucleotidase was significantly suppressed by atebrine, an inhibitor of NADH dehydrogenase of plasma membranes, and completely abolished by 2,4-dinitrophenol (2 X 10(-4)M) and Triton X-100 (2%). Inhibitors of electron transfer in the mitochondrial respiratory chain, rotenone and potassium cyanide, failed to affect 5'-nucleotidase activity in both the presence and absence of NADH. The data obtained give reasons to suggest a redox-dependent mechanism of 5'-nucleotidase activation in rat liver plasma membranes.  相似文献   

19.
Previous studies have shown that 5'-nucleotidase, an ectoenzyme from chicken gizzard, interacts specifically with laminin and fibronectin, two glycoproteins of the extracellular matrix. Recently, we demonstrated that 5'-nucleotidase was involved in the spreading of chick embryo fibroblast on laminin. In the present communication, we report that a monoclonal antibody (CG37) raised-directed against 5'-nucleotidase inhibited the spreading of chick embryo myoblasts on laminin after their initial attachment to the substrate. Furthermore, monoclonal antibody CG37 specifically eluted 5'-nucleotidase from immobilized laminin and thus enabled its isolation from other myoblast laminin-binding proteins.  相似文献   

20.
J Dornand  C Réminiac  J C Mani 《Biochimie》1977,59(4):425-432
The 5'-nucleotidase properties of isolated lymphocyte plasma membranes from young pig mesenteric nodes are described; nucleosides-5'-monophosphates are the substrates of this specific enzyme. Concanavalin A inhibits this enzyme; on the same membranes this mitogen does not affect alkaline phosphatase and activates the membrane bound (Ca2+) ATPase. The 5'-nucleotidase inhibition is due to a specific interaction of Con A with carbohydrate groups of the membrane; its high positive cooperativity suggests that the lectin promotes reorganization of the membrane bound 5'-nucleotidase. Solubilization of the 5'-nucleotidase does not prevent the effect of Con A and the solubilized enzyme is firmly bound by Con A-Sepharose 4B; these results suggest that Con A inhibits the enzyme by a direct interaction and that 5'-nucleotidase can be considered as an eventual receptor for the lectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号