首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to globally assess the effects of atmospheric nitrogen deposition and climate, associated with rising levels of atmospheric CO2, on the variability of carbon isotope discrimination (Δ13C), and intrinsic water‐use efficiency (iWUE) of angiosperm and conifer tree species. Eighty‐nine long‐term isotope tree‐ring chronologies, representing 23 conifer and 13 angiosperm species for 53 sites worldwide, were extracted from the literature, and used to obtain long‐term time series of Δ13C and iWUE. Δ13C and iWUE were related to the increasing concentration of atmospheric CO2 over the industrial period (1850–2000) and to the variation of simulated atmospheric nitrogen deposition and climatic variables over the period 1950–2000. We applied generalized additive models and linear mixed‐effects models to predict the effects of climatic variables and nitrogen deposition on Δ13C and iWUE. Results showed a declining Δ13C trend in the angiosperm and conifer species over the industrial period and a 16.1% increase of iWUE between 1850 and 2000, with no evidence that the increased rate was reduced at higher ambient CO2 values. The temporal variation in Δ13C supported the hypothesis of an active plant mechanism that maintains a constant ratio between intercellular and ambient CO2 concentrations. We defined linear mixed‐effects models that were effective to describe the variation of Δ13C and iWUE as a function of a set of environmental predictors, alternatively including annual rate (Nrate) and long‐term cumulative (Ncum) nitrogen deposition. No single climatic or atmospheric variable had a clearly predominant effect, however, Δ13C and iWUE showed complex dependent interactions between different covariates. A significant association of Nrate with iWUE and Δ13C was observed in conifers and in the angiosperms, and Ncum was the only independent term with a significant positive association with iWUE, although a multi‐factorial control was evident in conifers.  相似文献   

2.
Understanding the influences of climatic changes on water use efficiency (WUE) of Tibetan alpine meadows is important for predicting their long-term net primary productivity (NPP) because they are considered very sensitive to climate change. Here, we collected wool materials produced from 1962 to 2010 and investigated the long-term WUE of an alpine meadow in Tibet on basis of the carbon isotope values of vegetation (δ 13Cveg). The values of δ 13Cveg decreased by 1.34‰ during 1962–2010, similar to changes in δ 13C values of atmospheric CO2. Carbon isotope discrimination was highly variable and no trend was apparent in the past half century. Intrinsic water use efficiency (W i) increased by 18 μmol·mol–1 (approximately 23.5%) during 1962–2010 because the increase in the intercellular CO2 concentration (46 μmol·mol–1) was less than that in the atmospheric CO2 concentration (C a, 73 μmol·mol–1). In addition, W i increased significantly with increasing growing season temperature and C a. However, effective water use efficiency (W e) remained relatively stable, because of increasing vapor pressure deficit. C a, precipitation, and growing season temperature collectively explained 45% of the variation of W e. Our findings indicate that the W e of alpine meadows in the Tibetan Plateau remained relatively stable by physiological adjustment to elevated C a and growing season temperature. These findings improve our understanding and the capacity to predict NPP of these ecosystems under global change scenarios.  相似文献   

3.
The eastern Tibetan Plateau has become increasingly warmer and drier since the 1990s. Such warming and drying has a great impact on ecosystem processes on the eastern Tibetan Plateau. To determine their combined effects on CO2 and N2O emission rates, we conducted a field manipulative experiment in an alpine meadow of the eastern Tibetan Plateau during the growing season of 2009. The experiment showed that warming manipulation increased soil temperature by 1?°C, and drying manipulation decreased soil water content by 6.8?%. We found that by counteracting the effect of low temperature in the area, experimental warming significantly increased soil microbial biomass, the number of bacteria, fungi, actinomycetes, ammonifying bacteria, nitrobacteria and denitrifying bacteria, and facilitated the emission rates of CO2 and N2O by 33.4 and 31.5?%, respectively. However, decreased precipitation further aggravated soil water stress and inhibited the numbers of these organisms, and reduced the emission rates of CO2 and N2O by 47.4 and 37.9?%, respectively. So decreased soil water content tended to offset the positive effect of warming. Compared to the positive effects of warming, decreased soil water content was shown in our study to have even greater impact on the eastern Tibetan Plateau during the growing season. Therefore, inhibition of CO2 and N2O emission rates (32.3 and 29.3?%, respectively) by warming and drying will intensify if the combined effects of these climatic trends persist in the region.  相似文献   

4.
Ecosystem photosynthetic characteristics are of utmost importance for the estimation of regional carbon budget, but such characteristics are not well understood in alpine regions. We collected CO2 flux data measured by eddy covariance technique over an alpine dwarf shrubland on the Qinghai-Tibetan Plateau during years 2003–2010; and we quantified the temporal patterns of ecosystem apparent quantum yield (a), saturated photosynthetic rate (P max), and ecosystem dark respiration (R De). Results showed that the strong seasonality of a and R De was driven mainly by air temperature (T a), whereas that of P max was much more determined by leaf area index rather than abiotic factors. Diurnal thermal fluctuation inhibited significantly the daytime photosynthetic capacity. Stepwise regression revealed that the seasonal deviations of a, P max, and R De were significantly controlled by T a. The annual a was regulated mainly by annual growing season T a, which indicated that the response of ecosystem a was instant. The annual variations of P max correlated positively with soil temperature 5 cm below ground (T s) of the annual nongrowing season and those of R De related negatively with the annual nongrowing season precipitation. We suggested that a lagged response regulated the annual P max and the annual R De. Annual deviations of a and R De were both significantly controlled by annual T s, and those of P max were marginally determined by annual PPFD. Thus, the future warming scenario, especially significant for nongrowing seasonal warming in the Qinghai-Tibetan Plateau, would favor ecosystem photosynthetic capacity in the alpine dwarf shrubland.  相似文献   

5.
To determine the photosynthetic characteristics of C3 plants and their sensitivity to CO2 at different altitudes on the Tibetan Plateau, hulless barley (Hordeum vulgare L. ssp. vulgare) was grown at altitudes of 4,333 m and 3,688 m. Using gas-exchange measurements, photosynthetic parameters were simulated, including the maximum net photosynthesis (P max) and the apparent quantum efficiency (α). Plants growing at higher altitude had higher net photosynthetic rates (P N), photosynthesis parameters (P max and α) and sensitivities to CO2 enhancement than plants growing at lower altitude on the Tibetan Plateau. The enhancements of P N, P max, and α for plants growing at higher altitude, corresponding with 10 μmol(CO2) mol−1 increments, were approximately 0.20∼0.45%, 0.05∼0.20% and 0.12∼0.36% greater, respectively, than for plants growing at lower altitude, respectively, where CO2 levels rose from 10 to 170 μmol(CO2) mol−1. Therefore, on the Tibetan Plateau, the changes in the photosynthetic capacities and the photosynthetic sensitivities to CO2 observed in the C3 plants grown above 3,688 m are likely to increase with altitude despite the decreasing CO2 partial pressure.  相似文献   

6.
With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH4) emissions from wetlands and increased CH4 consumption of meadows, but might increase CH4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO2) and CH4. Nitrous oxide (N2O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.  相似文献   

7.
Liang E  Lu X  Ren P  Li X  Zhu L  Eckstein D 《Annals of botany》2012,109(4):721-728

Background and Aims

Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth.

Methods

Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away.

Key Results

Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May–June.

Conclusions

Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world.  相似文献   

8.
Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (C a) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to C a for J. thurifera and to higher C a and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of C a even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions.  相似文献   

9.
The creation of forest openings is a frequently observed phenomenon in many types of forests. On the southeastern Tibetan Plateau, where the average elevation is greater than 4000 m above sea level, differences in tree growth between forest stands with openings and completely closed stands are poorly characterized. Here, we presented a dendrochronological study of Tibetan juniper (Juniperus tibetica Kom.) and Sikkim spruce (Picea spinulosa (Griff.) Beissn.) in an open and a closed stand, near Qamdo of eastern Tibet. We found that the growth of juniper responded to climate in a similar way in the open and closed stands, and was positively correlated with temperature from October to January and with the Palmer Drought Severity Index (PDSI) from September to June. In contrast, the growth of spruce responded to climate differently in the open and closed stands: growth was positively correlated with the PDSI from September to May in the open stand, whereas it was positively correlated to November and December temperatures (of the prior year) and current June temperature in the closed stand. Interannual variation in, and standard deviations among, juniper tree ring widths were similar in both stands for the past four centuries, whereas they differed in spruce over the past two centuries, particularly in the 1900s. These results suggest that juniper tree ring growth is less sensitive to stand structure than that of spruce, thus providing more reliable climate signals. The data obtained from our study will help forest managers understand the ecology of juniper and spruce in open and closed stands and are therefore useful for management planning.  相似文献   

10.
Beyer EM 《Plant physiology》1975,56(2):273-278
The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of 14C2H4 into the tissue and (b) the conversion of 14C2H4 to 14CO2, was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to 14C2H4 markedly reduced both a and b. Increasing the 14C2H4 concentration from 0.14 to over 100 μl/l progressively increased the rate of a and b with tissue incorporation being greater than 14C2H4 to 14CO2 conversion only below 0.3 μl/l 14C2H4. Reduction of the O2 concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO2 (5%) severely inhibited 14C2H4 to 14CO2 conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during 14C2H4 treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b.  相似文献   

11.
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C a) on ecosystems, it is essential to determine the combined effects of drought and elevated C a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on leaf P N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought. Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon.  相似文献   

12.
Tree-ring width and age structure of Juniperus przewalskii (Qilian juniper) forests were analyzed for four tree-line sites in Qilian and Anyemaqen Mountains, northeastern Tibetan Plateau, to investigate their relationships to climate change. Tree-line growth on Qilian Mountain was mainly limited by temperature at the low-frequency band. However, tree-line growth in the Anyemaqen Mountain was highly correlated with the current growing season temperature at the high-frequency band, and with the previous growing season precipitation at the low-frequency band. A temperature-stressed growth pattern at colder western sites and a moisture-stressed growth pattern at the warm, drier eastern tree-line sites were detected. The number of surviving trees in the tree-line ecotone was not clearly correlated with temperature before the 1900s. An unprecedented rise in the number of trees coincided well with the rapid global warming after the 1900s.  相似文献   

13.
The relationships between leaf nitrogen content per unit area (Na) and (a) the initial slope of the photosynthetic CO2 response curve, (b) activity and amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC), and (c) chlorophyll content were studied in the ecologically similar weeds Chenopodium album (C3) and Amaranthus retroflexus (C4). In both species, all parameters were linearly dependent upon leaf Na. The dependence of the initial slope of the CO2 response of photosynthesis on Na was four times greater in A. retroflexus than in C. album. At equivalent leaf Na contents, C. album had 1.5 to 2.6 times more CO2 saturated Rubisco activity than A. retroflexus. At equal assimilation capacities, C. album had four times the Rubisco activity as A. retroflexus. In A. retroflexus, a one to one ratio between Rubisco activity and photosynthesis was observed, whereas in C. album, the CO2 saturated Rubisco activity was three to four times the corresponding photosynthetic rate. The ratio of PEPC to Rubisco activity in A. retroflexus ranged from four at low Na to seven at high Na. The fraction of organic N invested in carboxylation enzymes increased with increased Na in both species. The fraction of N invested in Rubisco ranged from 10 to 27% in C. album. In A. retroflexus, the fraction of Na invested in Rubisco ranged from 5 to 9% and the fraction invested in PEPC ranged from 2 to 5%.  相似文献   

14.
Abstract. Climate change will include correlated increases in temperature and atmospheric CO2 concentration (Ca). Rising temperatures will increase the ratio of photorespiratory loss of carbon to photosynthetic gain, whilst rising Ca will have an opposing effect. The mechanism of these effects at the level of carboxylation in C3 photosynthesis are quantitatively well understood and provide a basis for models of the response of leaf and canopy carbon exchange to climate change. The principles of such a model are referred to here and used to quantitatively examine the implications of concurrent increase in temperature and Ca. Simulations of leaf photosynthesis show the increase, with elevation of Ca from 350 to 650 μmol mol-1, in light saturated rates of CO2 uptake (Asat) and maximum quantum yields (φ) to rise with temperature. An increase in Ca from 350 to 650 μmol mol-1 can increase Asat by 20% at 10°C and by 105% at 35°C, and can raise the temperature optimum of Asat by 5°C. This pattern of change agrees closely with experimental data. At the canopy level, simulations also suggest a strong interaction of increased temperature and CO2 concentration. Predictions are compared with the findings of long-term field studies. The principles used here suggest that elevated Ca will alter both the magnitude of the response of leaf and canopy carbon gain to rising temperature, and sometimes, the direction of response. Findings question the value of models for predicting plant production in response to climate change which ignore the direct effects of rising Ca and the modifications that rising Ca imposes on the temperature response of net CO2 exchange.  相似文献   

15.
Two clones of Hevea brasiliensis (RRII 105 and PB 235) were grown for one year in two distinct agroclimatic locations (warmer and colder, W and C) in peninsular India. We simultaneously measured gas exchange and chlorophyll (Chl) fluorescence on fully mature intact leaves at different photosynthetic photon flux densities (PPFDs) and ambient CO2 concentrations (C a) and at constant ambient O2 concentration (21 %). Net photosynthetic rate (P N), apparent quantum yield for CO2 assimilation (Φc), in vivo carboxylation efficiency (CE), and photosystem 2 quantum yield (ΦPS2) were low in plants grown in C climate and these reductions were more predominant in RRII 105 than in PB 235 which was also reflected in their growth. We estimated in these clones the partitioning of photosynthetic electrons between CO2 reduction (JA) and processes other than CO2 reduction (J*) at low and high PPFDs and C a. At high C a (700 µmol mol−1) most of the photosynthetic electrons were used for CO2 assimilation and negligible amount went for other processes when PPFD was low (200–300 µmol m−2 s−1) both in the C and W climates. But at high PPFD (900-1 100 µmol m−2 s−1), J* was appreciably high even at a high C a. Hence at normal ambient C a and high irradiance, electrons can be generated in the photosynthetic apparatus far in excess of what can be safely utilised for photosynthetic CO2 reduction. However, at high C a there was increased diversion of electrons to photosynthetic CO2 reduction which resulted in improved photosynthetic parameters even in plants grown in C climate.  相似文献   

16.
High‐elevation forests are experiencing high rates of warming, in combination with CO2 rise and (sometimes) drying trends. In these montane systems, the effects of environmental changes on tree growth are also modified by elevation itself, thus complicating our ability to predict effects of future climate change. Tree‐ring analysis along an elevation gradient allows quantifying effects of gradual and annual environmental changes. Here, we study long‐term physiological (ratio of internal to ambient CO2, i.e., Ci/Ca and intrinsic water‐use efficiency, iWUE) and growth responses (tree‐ring width) of Himalayan fir (Abies spectabilis) trees in response to warming, drying, and CO2 rise. Our study was conducted along elevational gradients in a dry and a wet region in the central Himalaya. We combined dendrochronology and stable carbon isotopes (δ13C) to quantify long‐term trends in Ci/Ca ratio and iWUE (δ13C‐derived), growth (mixed‐effects models), and evaluate climate sensitivity (correlations). We found that iWUE increased over time at all elevations, with stronger increase in the dry region. Climate–growth relations showed growth‐limiting effects of spring moisture (dry region) and summer temperature (wet region), and negative effects of temperature (dry region). We found negative growth trends at lower elevations (dry and wet regions), suggesting that continental‐scale warming and regional drying reduced tree growth. This interpretation is supported by δ13C‐derived long‐term physiological responses, which are consistent with responses to reduced moisture and increased vapor pressure deficit. At high elevations (wet region), we found positive growth trends, suggesting that warming has favored tree growth in regions where temperature most strongly limits growth. At lower elevations (dry and wet regions), the positive effects of CO2 rise did not mitigate the negative effects of warming and drying on tree growth. Our results raise concerns on the productivity of Himalayan fir forests at low and middle (<3,300 m) elevations as climate change progresses.  相似文献   

17.
Recent increases in vegetation greenness over much of the world reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming in those areas appears to be declining for unclear reasons, contributing to large uncertainties in predicting how vegetation will respond to future global changes. Here, we investigated the changes of satellite-observed peak season absorbed photosynthetically active radiation (Fmax) on the Tibetan Plateau between 1982 and 2016. Although climate trends are similar across the Plateau, we identified robust divergent responses (a greening of 0.31 ± 0.14% year−1 in drier regions and a browning of 0.12 ± 0.08% year−1 in wetter regions). Using an eco-evolutionary optimality (EEO) concept of plant acclimation/adaptation, we propose a parsimonious modelling framework that quantitatively explains these changes in terms of water and energy limitations. Our model captured the variations in Fmax with a correlation coefficient (r) of .76 and a root mean squared error of .12 and predicted the divergent trends of greening (0.32 ± 0.19% year−1) and browning (0.07 ± 0.06% year−1). We also predicted the observed reduced sensitivities of Fmax to precipitation and temperature. The model allows us to explain these changes: Enhanced growing season cumulative radiation has opposite effects on water use and energy uptake. Increased precipitation has an overwhelmingly positive effect in drier regions, whereas warming reduces Fmax in wetter regions by increasing the cost of building and maintaining leaf area. Rising CO2 stimulates vegetation growth by enhancing water-use efficiency, but its effect on photosynthesis saturates. The large decrease in the sensitivity of vegetation to climate reflects a shift from water to energy limitation. Our study demonstrates the potential of EEO approaches to reveal the mechanisms underlying recent trends in vegetation greenness and provides further insight into the response of alpine ecosystems to ongoing climate change.  相似文献   

18.
The dwarf bamboo (Fargesia rufa Yi), growing understory in subalpine dark coniferous forest, is one of the main foods for giant panda, and it influences the regeneration of subalpine coniferous forests in southwestern China. To investigate the effects of elevated CO2, temperature and their combination, the dwarf bamboo plantlets were exposed to two CO2 regimes (ambient and double ambient CO2 concentration) and two temperatures (ambient and +2.2°C) in growth chambers. Gas exchange, leaf traits and carbohydrates concentration were measured after the 150‐day experiment. Elevated CO2 significantly increased the net photosynthetic rate (Anet), intrinsic water‐use efficiency (WUEi) and carbon isotope composition (δ13C) and decreased stomatal conductance (gs) and total chlorophyll concentration based on mass (Chlm) and area (Chla). On the other hand, elevated CO2 decreased specific leaf area (SLA), which was increased by elevated temperature. Elevated CO2 also increased foliar carbon concentration based on mass (Cm) and area (Ca), nitrogen concentration based on area (Na), carbohydrates concentration (i.e. sucrose, sugar, starch and non‐structural carbohydrates) and the slope of the Anet–Na relationship. However, elevated temperature decreased Cm, Ca and Na. The combination of elevated CO2 and temperature hardly affected SLA, Cm, Ca, Nm, Na, Chlm and Chla. Variables Anet and Na had positive linear relationships in all treatments. Our results showed that photosynthetic acclimation did not occur in dwarf bamboo at elevated CO2 and it could adjust physiology and morphology to enable the capture of more light, to increase WUE and improve nutritional conditions.  相似文献   

19.
Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland.  相似文献   

20.
Abies fabri (Mast.) Craib is an endemic and dominant species in typical subalpine dark coniferous forests distributed in the eastern Tibetan Plateau. To assess how A. fabri may respond and adapt to future climate changes, we investigated the effects of drought and warming on the growth, resource allocation in biomass, membrane stability, and oxidative stress of the seedlings over two growing seasons. Drought (11.4 % average reduction in soil moisture) was created by excluding natural precipitation with a plastic roof and warming was performed by an infrared heater above the plots. Drought increased root length, the root-to-shoot ratio, N concentration, and N/P ratio in all organs, and decreased seedling height and C/N ratio in all organs. Moreover, warming (2 °C) decreased seedling height, root length, total biomass, and N concentration in stems but increased the C/N ratio. Furthermore, the combination of drought and warming decreased seedling height and biomass in all organs, which further increased the N concentration and N/P ratio in all organs. A significant decrease in the membrane stability index and an increase in malondialdehyde, superoxide radical (O2 ?), and hydrogen peroxide (H2O2) were exactly matched with a dramatic decrease of total biomass under the combination of drought and warming treatment. Together these results implied that drought alone and warming alone were unfavorable for the early growth of A. fabri, and drought plus warming will intensify the opposite effect of drought alone or warming alone. Moreover, N will be a limited nutrient under extant and future climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号