首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inter and intra-annual carbon isotope compositions (δ13C) of several annual growth rings of teak trees from two monsoonal regimes from India were studied and compared with the corresponding oxygen isotopic (δ18O) variations. In teak from both the regimes, amplitudes of intra-annual δ13C were ∼2-3 times lower than that observed in δ18O. Seasonal cycle with lower δ13C values at the middle and higher at ring boundaries was observed for teak from central India, dominated by the southwest monsoon. Positive correlations of intra-annual δ13C values with the corresponding δ18O values of the same rings and with relative humidity (RH) of the concurrent period suggest a dominant role of RH in controlling δ13C values of teak from central India. Intra-annual δ13C variations of teak from southern India, receiving both the southwest and northeast monsoons, revealed an initial decreasing trend followed by an increasing trend before culminating in depleted 13C values at the end of the growing season. No correlation was observed between intra-annual δ13C and δ18O variations of teak trees from southern India. Regional differences in the climatology of δ13C of atmospheric CO2 or the lengths of growing season could be likely reasons for differing intra-annual δ13C variations of teak from the two climatic regimes.  相似文献   

2.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions.  相似文献   

3.
An attempt has been made to explore dendroclimatological potentiality of teak (Tectona grandis L.) towards the reconstruction of climate from a new geographical region. Growth of this tree has been found to be limited by the low monsoon precipitation. Based on ring-width data of teak, mean monsoon precipitation of June–September has been reconstructed back to AD 1835. The reconstructed climate records show several alternating periods of high and low monsoon episodes. Many of these low monsoon years have been recorded to coincide with most of the known principal drought years of India.  相似文献   

4.
Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R(2) = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.  相似文献   

5.
Tectona grandis (teak) is an important commercial tree species that is widely used in tropical dendrochronology due to the formation of climate-sensitive annual growth rings. However, young trees growing in plantation conditions exhibit poor ring visibility during the first years of growth, limiting the dendrochronology application. In the present study, we use x-ray densitometry to determine the wood density profile between and within annual rings and at the sapwood-heartwood boundary in trees from fast-growth plantations. The resulting wood density profiles (WDP) can be categorized as uniform, stable growth, unstable growth, and false. The annual ring boundaries were indistinct in trees less than 8 years old. In mature trees, the annual ring boundaries are more defined. In relation to the sapwood-heartwood boundary, the WDP showed a decrease in the wood density; however, this decrease is influenced by the annual ring boundary when the two boundaries coincide. The identification of annual rings in trees growing in fast-growth plantations should be combined with X-ray densitometry and visual identification if wood density data are necessary for deriving other analysis, as climate change, from annual ring.  相似文献   

6.
In tropical forest, landscape fragmentation and the consequent degradation of disturbed forests increase the incidence of light and dry hot winds, causing a disturbance on natural regeneration. Under these conditions, lianas (woody vines) development is stimulated instead of other species, which are more suited to mature forest and under less influence of the edge effect. For this, lianas colonization is an important variable for assessing the disturbance level of a forest. In this context, it becomes important to understand the nature of the competitive relationships between hyper-abundant lianas and ring growth of the host trees. Here, we selected trees with occupation or absence of lianas from two tropical species – Pinus caribaea var. hondurensis (Caribbean pine) and Tectona grandis (teak) – localized in a semideciduous forest fragment in southeastern Brazil, aiming to compare growth, climatic response, anatomy (vessels and intra-annual density fluctuations), wood density and carbon, by tree-ring analysis. The results showed that the lianas caused a change in tree-ring anatomy of host trees in last 10 years, mainly. We observed that trees occupied by lianas had a decrease the radial growth and carbon in the two species, an increase of the vessels size in teak and a decrease of the IADF frequency in Caribbean pine. In teak, the climate-tree relationship indicated that trees with lianas had lower response to rainfall and higher response to temperature in the summer (rainy and hottest period); in Caribbean pine, we observed that trees with lianas had a 2-month delay in the radial growth response to rainfall in the dry season. In the teak group, we observed that host trees had higher wood density values than liana-free tree in the outer rings, and the opposite was showed for pine. These findings show that tree-ring growth of host trees are a strong bioindicator of forest disturbance caused by aggressive colonization of lianas. We believe that these methods are applicable to future studies relating to the effects of habitat fragmentation and forest degradation on biodiversity and ecosystem services, particularly in the context of global climate change.  相似文献   

7.
根据黄土高原南北样带尺度的人工刺槐林(Robinia pseudoacacia)的年轮宽度资料,分析了该地区刺槐树木生长趋势,以及刺槐年表对气候响应随降雨梯度变化规律。研究结果表明延安以北的刺槐样点(绥德、神木)年轮指数近期趋于下降,树木有生长衰退现象;而延安以南刺槐样点(延安、富县、宜君、永寿)年轮指数近期趋于上升,树木无生长衰退现象。气候响应结果表明,刺槐年表对气候响应均以延安样点最为敏感,表现年表与温度的负相关关系,以及年表与降雨和干旱指数的正相关关系,而延安以北和以南刺槐样点对气候响应敏感性均较低。黄土高原中部延安地区地处森林草原过渡带,刺槐生长对外界环境变化最为敏感,年表中气候信号也较强;延安以南地区地处森林植被带,气候条件较为适宜刺槐林生长,因而年表中气候信号较弱;延安以北地区地处草原植被带,气候条件比较恶劣,刺槐生长对干旱气候已有一定适应性特征,因而年表中气候信号也较弱。  相似文献   

8.
Water deficiency is the primary limiting factor for tree growth in arid and semi-arid areas. Droughts associated with rising temperatures have increased in severity and frequency globally over the past few decades, making the trees in the drought-prone sites first be affected by water shortages. However, our understanding of tree growth status in these areas, and of their response to drought, is currently insufficient; especially in the context of global warming. Here, we studied 94 Chinese pine (Pinus tabulaeformis) and 86 spruce (Picea crassifolia) trees from different altitudes [2,100–2400 m above sea level (a.s.l.)] distributed at the desert margins of Northwestern China to explore tree growth and drought response from multiple perspectives using dendroecological approaches. Significant growth decline, across all tree species and altitudes, was detected in response to an interdecadal trend towards a drier climate. Moreover, the extent of tree growth decline, the proportion of affected trees, and the degree of moisture dependence have all tended to increase in each sample site, most likely due to enhanced drought severity and duration in recent decades. The more sensitive and susceptible trees were found at lower elevations (drier sites) and may signify a higher vulnerability to heating-induced drought stress. Tree resistance to drought showed strong negative correlation with drought severity across all sample sites. However, the connection between post-drought tree resilience and drought intensity is weak, perhaps because the samples were all collected from living trees, while those that had died were not sampled. The priority for future work should be to combine surviving and dead trees simultaneously, thus achieving a more representative view of tree resilience to drought; this will improve our knowledge of forest dynamics and even ecosystem succession in these vulnerable and sensitive environments.  相似文献   

9.
Over the last decade the field of tropical dendroecology has developed rapidly and major achievements have been made. We reviewed the advances in three main themes within the field. First, long chronologies for tropical tree species were constructed which allowed climate reconstructions, revealed sources of climatic variation and clarified climate–growth relations. Other studies combined tree-ring data and stable isotope (13C and 18O) measurements to evaluate the response of tropical trees to climatic variation and changes. A second set of studies assessed long-term growth patterns of individual trees throughout their life. These studies enhanced the understanding of growth trajectories to the canopy, quantified autocorrelated tree growth and yielded new estimates of tree ages. Such studies were also used to reconstruct the disturbance history of tropical forests. The last set of studies applied tree-ring data to growth models. Tree-ring data can replace diameter measurements from research plots, provide additional information to construct population models, improve timber yield models and validate model output. Based on our review, we propose two main directions for future research. (1) An evaluation of the causes and consequences of growth variation within and among trees and their relation to environmental variation. Studies evaluating this directly contribute to improved understanding of tropical tree ecology. (2) The simultaneous measurement of widths and stable isotope fractions in tree rings offers the potential to study responses of trees to climatic change. Given the major role of tropical forests in the global carbon cycle, knowing these responses is of high priority.  相似文献   

10.
Sustainable forestry requires accurate ecological information such as species composition, growth rates and recruitment dynamics. Tree growth rates are usually obtained through long-term periodic re-measurements of individual trees or through the analysis of tree growth rings in stem cross sections. However, tree growth ring analysis was traditionally thought to be only possible in biomes with strong seasonality such as those found in high latitude temperate regions. A lack of data on the occurrence and characteristics of tree rings in tropical trees may be due to a lack of investigations. Here we characterise the growth rings of 183 tree species from seven forest types across an altitudinal gradient in northern and central Perú at macro- and microscopic levels. A correspondence analysis showed an association between phylogenetic relatedness and the level of distinctiveness in the growth rings. Deciduous species of seasonally dry tropical forests were associated with distinct growth rings and mainly delimited by marginal parenchyma, while indistinct growth rings were associated with evergreen trees from lowland Amazonian and pre-montane wet forests. Additionally, for the first time the presence of growth ring boundaries defined by marginal phloem is reported in two tropical tree species, Gallesia integrifolia (Spreng.) Harms and Vochysia mapirensis Rusby. This contribution represents the most exhaustive record to date of the occurrence and anatomy of growth rings in trees of the Peruvian tropics, which can be used to inform future dendrochronological studies.  相似文献   

11.
Macaronesian laurel forests are the only remnants of a subtropical palaeoecosystem dominant during the Tertiary in Europe and northern Africa. These biodiverse ecosystems are restricted to cloudy and temperate insular environments in the North Atlantic Ocean. Due to their reduced distribution area, these forests are particularly vulnerable to anthropogenic disturbances and changes in climatic conditions. The assessment of laurel forest trees’ response to climate variation by dendrochronological methods is limited because it was assumed that the lack of marked seasonality would prevent the formation of distinct annual tree rings. The aims of this study were to identify the presence of annual growth rings and to assess the dendrochronological potential of the most representative tree species from laurel forests in Tenerife, Canary Islands. We sampled increment cores from 498 trees of 12 species in two well-preserved forests in Tenerife Island. We evaluated tree-ring boundary distinctness, dating potential, and sensitivity of tree-ring growth to climate and, particularly, to drought occurrence. Eight species showed clear tree-ring boundaries, but synchronic annual tree rings and robust tree-ring chronologies were only obtained for Laurus novocanariensis, Ilex perado subsp. platyphylla, Persea indica and Picconia excelsa, a third of the studied species. Tree-ring width depended on water balance and drought occurrence, showing sharp reductions in growth in the face of decreased water availability, a response that was consistent among species and sites. Inter-annual tree-ring width variation was directly dependent on rainfall input in the humid period, from previous October to current April. The four negative pointer years 1995, 1999, 2008 and 2012 corresponded to severe drought events in the study area. This study gives the first assessment of dendrochronological potential and tree-ring climate sensitivity of tree species from the Tenerife laurel forest, which opens new research avenues for dendroecological studies in Macaronesian laurel forests.  相似文献   

12.
Linking drought to the timing of physiological processes governing tree growth remains one limitation in forecasting climate change effects on tropical trees. Using dendrometers, we measured fine‐scale growth for 96 trees of 25 species from 2013 to 2016 in an everwet forest in Puerto Rico. Rainfall over this time span varied, including an unusual, severe El Niño drought in 2015. We assessed how growing season onset, median day, conclusion, and length varied with absolute growth rate and tree size over time. Stem growth was seasonal, beginning in February, peaking in July, and ending in November. Species growth rates varied between 0 and 8 mm/year and correlated weakly with specific leaf area, leaf phosphorus, and leaf nitrogen, and to a lesser degree with wood specific gravity and plant height. Drought and tree growth were decoupled, and drought lengthened and increased variation in growing season length. During the 2015 drought, many trees terminated growth early but did not necessarily grow less. In the year following drought, trees grew more over a shorter growing season, with many smaller trees showing a post‐drought increase in growth. We attribute the increased growth of smaller trees to release from light limitation as the canopy thinned because of the drought, and less inferred hydraulic stress than larger trees during drought. Soil type accounted for interannual and interspecific differences, with the finest Zarzal clays reducing tree growth. We conclude that drought affects the phenological timing of tree growth and favors the post‐drought growth of smaller, sub‐canopy trees in this everwet forest. Abstract in Spanish is available with online material.  相似文献   

13.
不同径级油松径向生长对气候的响应   总被引:1,自引:0,他引:1  
建立了黑里河自然保护区油松年轮宽度年表,通过不同径级油松径向生长对逐月气候因子的响应关系,研究了干旱对不同径级油松径向生长的影响。结果表明:两个径级油松的年轮宽度指数达到极显著相关(R=0.943,P<0.01),其中小径级(平均胸径20 cm)油松年表的平均敏感度显著高于大径级(平均胸径43 cm)油松年表(P<0.01)。不同径级油松均与上年9月、当年2月及当年5—6月的降水显著正相关(P<0.05),与当年6月的平均温度显著负相关(P<0.05),此外,小径级油松还与当年7月的降水显著正相关(P<0.05);降水是影响油松生长的主要气候因子。不同径级油松的径向生长量在干旱年份均显著降低(P<0.01)且小径级油松的生长降低量显著高于大径级油松(P<0.01);不同径级油松生长量在干旱发生后1年左右的时间内均恢复正常且小径级油松恢复速度更快。  相似文献   

14.
In this paper, we analyze the relationships among the tree-ring chronology, meteorological drought (precipitation), agricultural drought (Palmer Drought Severity Index PDSI), hydrological drought (runoff), and agricultural data in the Shanxi province of North China. Correlation analyses indicate that the tree-ring chronology is significantly correlated with all of the drought indices during the main growing season from March to July. Sign test analyses further indicate that the tree-ring chronology shows variation similar to that of the drought indices in both high and low frequencies. Comparisons of the years with narrow tree rings to the severe droughts reflected in all three indices from 1957 to 2008 reveal that the radial growth of the trees in the study region can accurately record the severe drought for which all three indices were in agreement (1972, 1999, 2000, and 2001). Comparisons with the dryness/wetness index indicate that tree-ring growth can properly record the severe droughts in the history. Correlation analyses among agricultural data, tree-ring chronology, and drought indices indicate that the per-unit yield of summer crops is relatively well correlated with the agricultural drought, as indicated by the PDSI. The PDSI is the climatic factor that significantly influences both tree growth and per-unit yield of summer crops in the study region. These results indicate that the PDSI and tree-ring chronology have the potential to be used to monitor and predict the yield of summer crops. Tree-ring chronology is an important tool for drought research and for wider applications in agricultural and hydrological research.  相似文献   

15.
We measured radial variation of carbon isotope composition and vessel traits in tree species in seasonally dry forests of Northeast Thailand to explore a more reliable and amenable method of tropical dendrochronology for trees that lack visually detectable and consistent growth rings. Six Dipterocarpaceae species (3 Shorea, 2 Dipterocarpus, and 1 Hopea species) with indistinct or irregular growth rings and teak (Tectona grandis), a species which forms distinct growth rings, were examined. The δ13C value variations in all species showed annual cyclicity. Dipterocarpaceae species usually marked the lowest values of δ13C in the middle of the growing season, whereas teak had the lowest values at nearly the end of the growing season. Since the growing season of the species examined almost corresponds to the rainy season in the study area, the δ13C variation was likely caused by the change in moisture availability. The different variation pattern of teak was attributable to its stronger dependence on 13C-enriched reserved material early in the growing season. Changes in tree vessel traits for all species examined also showed annual cyclicity. Dipterocarpaceae species showed significant correlation between δ13C values and vessel measurements. Vessel lumen (mean area, tangential and radial diameter, and proportion of total area) had a negative correlation, whereas vessel frequency showed a positive correlation. The correlations indicated that changes in vessel traits were caused by the seasonal variation of moisture available to the trees. Thus, we concluded that methods using wood anatomy, as well as δ13C, have great potential for use as tools in tropical dendrochronology within the context of seasonal climate.  相似文献   

16.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.  相似文献   

17.
In the Mediterranean climate regions, drought events are expected to affect the growth of forests ecosystems by changing trees growth rates and eventually inducing shifts in their growth patterns. Cork oak (Quercus suber L.) is a strictly western Mediterranean tree species periodically harvested for its bark, the cork. So far, cork oak has received limited attention for dendroclimatological studies due to its typical faint and erratic tree wood rings. Moreover, its distinct cork rings chronologies have been completely neglected. In this study we introduce an approach using cork ring chronologies dated back 9–10 years for climate response. Despite enhancing interannual variability and increasing statistical response to short-term climatic variability, still poorly understood, this study will possibly allow infer long-term climate response. We analyzed the cork ring chronologies of 55 cork samples collected in mature (under exploitation) trees in three distinct locations in southwestern Portugal. Cork growth recorded a high climate signal, with highly significant and coherent responses to the yearly climate-related sources of variation. We successfully assessed trends of cork growth via correlation analysis including selected climate variables among mean monthly temperature, monthly precipitation and, on an annual basis, eight precipitation indices. The high mean sensitivities and inter-series correlations found for cork ring chronologies combined with the significant variance explained by climate variables suggest that climate is likely one dominant signal that affects cork growth, but local environmental stresses can decisively affect this (climate) signal. Assuming cork growth as a proxy for cork oak growth, it seems conceivable that despite the trees being highly resistant to drought stress, cork oak woodlands in southwestern Portugal would have to face lesser growth in a global warming scenario.  相似文献   

18.
Knowledge on juvenile tree growth is crucial to understand how trees reach the canopy in tropical forests. However, long-term data on juvenile tree growth are usually unavailable. Annual tree rings provide growth information for the entire life of trees and their analysis has become more popular in tropical forest regions over the past decades. Nonetheless, tree ring studies mainly deal with adult rings as the annual character of juvenile rings has been questioned. We evaluated whether juvenile tree rings can be used for three Bolivian rainforest species. First, we characterized the rings of juvenile and adult trees anatomically. We then evaluated the annual nature of tree rings by a combination of three indirect methods: evaluation of synchronous growth patterns in the tree- ring series, 14C bomb peak dating and correlations with rainfall. Our results indicate that rings of juvenile and adult trees are defined by similar ring-boundary elements. We built juvenile tree-ring chronologies and verified the ring age of several samples using 14C bomb peak dating. We found that ring width was correlated with rainfall in all species, but in different ways. In all, the chronology, rainfall correlations and 14C dating suggest that rings in our study species are formed annually.  相似文献   

19.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.  相似文献   

20.
Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号