首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The arterivirus equine arteritis virus nonstructural protein 10 (nsp10) has previously been predicted to contain a Zn finger structure linked to a superfamily 1 (SF1) helicase domain. A recombinant form of nsp10, MBP-nsp10, was produced in Escherichia coli as a fusion protein with the maltose-binding protein. The protein was partially purified by affinity chromatography and shown to have ATPase activity that was strongly stimulated by poly(dT), poly(U), and poly(dA) but not by poly(G). The protein also had both RNA and DNA duplex-unwinding activities that required the presence of 5' single-stranded regions on the partial-duplex substrates, indicating a 5'-to-3' polarity in the unwinding reaction. Results of this study suggest a close functional relationship between the arterivirus nsp10 and the coronavirus helicase, for which NTPase and duplex-unwinding activities were recently demonstrated. In a number of biochemical properties, both arterivirus and coronavirus SF1 helicases differ significantly from the previously characterized RNA virus SF1 and SF2 enzymes. Thus, the combined data strongly support the idea that nidovirus helicases may represent a separate group of RNA virus-encoded helicases with distinct properties.  相似文献   

3.
4.
5.
The gene expression of plus-strand RNA viruses with a polycistronic genome depends on translation and replication of the genomic mRNA, as well as synthesis of subgenomic (sg) mRNAs. Arteriviruses and coronaviruses, distantly related members of the nidovirus order, employ a unique mechanism of discontinuous minus-strand RNA synthesis to generate subgenome-length templates for the synthesis of a nested set of sg mRNAs. Non-structural protein 1 (nsp1) of the arterivirus equine arteritis virus (EAV), a multifunctional regulator of viral RNA synthesis and virion biogenesis, was previously implicated in controlling the balance between genome replication and sg mRNA synthesis. Here, we employed reverse and forward genetics to gain insight into the multiple regulatory roles of nsp1. Our analysis revealed that the relative abundance of viral mRNAs is tightly controlled by an intricate network of interactions involving all nsp1 subdomains. Distinct nsp1 mutations affected the quantitative balance among viral mRNA species, and our data implicate nsp1 in controlling the accumulation of full-length and subgenome-length minus-strand templates for viral mRNA synthesis. The moderate differential changes in viral mRNA abundance of nsp1 mutants resulted in similarly altered viral protein levels, but progeny virus yields were greatly reduced. Pseudorevertant analysis provided compelling genetic evidence that balanced EAV mRNA accumulation is critical for efficient virus production. This first report on protein-mediated, mRNA-specific control of nidovirus RNA synthesis reveals the existence of an integral control mechanism to fine-tune replication, sg mRNA synthesis, and virus production, and establishes a major role for nsp1 in coordinating the arterivirus replicative cycle.  相似文献   

6.
7.
8.
The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.  相似文献   

9.
The human coronavirus 229E (HCoV-229E) replicase gene-encoded nonstructural protein 13 (nsp13) contains an N-terminal zinc-binding domain and a C-terminal superfamily 1 helicase domain. A histidine-tagged form of nsp13, which was expressed in insect cells and purified, is reported to unwind efficiently both partial-duplex RNA and DNA of up to several hundred base pairs. Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed most efficiently. Using the NTPase active site, HCoV-229E nsp13 also mediates RNA 5'-triphosphatase activity, which may be involved in the capping of viral RNAs.  相似文献   

10.
The hepatitis C virus (HCV) nonstructural 3 protein (NS3) contains at least two domains associated with multiple enzymatic activities; a serine protease activity resides in the N-terminal one-third of the protein, whereas RNA helicase activity and RNA-stimulated nucleoside triphosphatase activity are associated with the C-terminal portion. To study the possible mutual influence of these enzymatic activities, a full-length NS3 polypeptide of 67 kDa was expressed as a nonfusion protein in Escherichia coli, purified to homogeneity, and shown to retain all three enzymatic activities. The protease activity of the full-length NS3 was strongly dependent on the activation by a synthetic peptide spanning the central hydrophobic core of the NS4A cofactor. Once complexed with the NS4A-derived peptide, the full-length NS3 protein and the isolated N-terminal protease domain cleaved synthetic peptide substrates with comparable efficiency. We show that, as in the case of the isolated protease domain, the protease activity of full-length NS3 undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A-NS4B and NS5A-NS5B. We have also characterized and quantified the NS3 ATPase, RNA helicase, and RNA-binding activities under optimized reaction conditions. Compared with the isolated N-terminal and C-terminal domains, recombinant full-length NS3 did not show significant differences in the three enzymatic activities analyzed in independent in vitro assays. We have further explored the possible interdependence of the NS3 N-terminal and C-terminal domains by analyzing the effect of polynucleotides on the modulation of all NS3 enzymatic functions. Our results demonstrated that the observed inhibition of the NS3 proteolytic activity by single-stranded RNA is mediated by direct interaction with the protease domain rather than with the helicase RNA-binding domain.  相似文献   

11.
NS3 protein of dengue virus type 2 has a serine protease domain within the N-terminal 180 residues. NS2B is required for NS3 to form an active protease involved in processing of the viral polyprotein precursor. The region carboxy terminal to the protease domain has conserved motifs present in several viral RNA-stimulated nucleoside triphosphatase (NTPase)/RNA helicases. To define the functional domains of protease and NTPase/RNA helicase activities of NS3, full-length and amino-terminal deletion mutants of NS3 were expressed in Escherichia coli and purified. Deletion of 160 N-terminal residues of NS3 (as in NS3del.2) had no detrimental effect on the basal and RNA-stimulated NTPase as well as RNA helicase activities. However, mutagenesis of the conserved P-loop motif of the RNA helicase domain (K199E) resulted in loss of ATPase activity. The RNA-stimulated NTPase activity was significantly affected by deletion of 20 amino acid residues from the N terminus or by substitutions of the cluster of basic residues, 184RKRK-->QNGN, of NS3del.2, although both mutant proteins retained the conserved RNA helicase motifs. Furthermore, the minimal NS3 protease domain, required for cleavage of the 2B-3 site, was precisely defined to be 167 residues, using the in vitro processing of NS2B-NS3 precursors. Our results reveal that the functional domains required for serine protease and RNA-stimulated NTPase activities map within the region between amino acid residues 160 and 180 of NS3 protein and that a novel motif, the cluster of basic residues 184RKRK, plays an important role for the RNA-stimulated NTPase activity.  相似文献   

12.
The Dugesia japonica vasa-like gene B (DjVLGB) protein is a DEAD-box RNA helicase of a planarian, which is well known for its strong regenerative capacity. DjVLGB shares sequence similarity to the Drosophila germ-line-specific DEAD-box RNA helicase Vasa, and even higher similarity to its paralogue, mouse PL10. In this study, we solved the crystal structure of the DjVLGB N-terminal RecA-like domain. The overall fold and the structures of the putative ATPase active site of the DjVLGB N-terminal RecA-like domain are similar to those of the previously reported DEAD-box RNA helicase structures. In contrast, the surface structure of the side opposite to the putative ATPase active site is different from those of the other DEAD-box RNA helicases; the characteristic hydrophobic pockets are formed with aromatic and proline residues. These pocket-forming residues are conserved in the PL10-subfamily proteins, but less conserved in the Vasa orthologues and not conserved in the DEAD-box RNA helicases. Therefore, the structural features that we found are characteristic of the PL10-subfamily proteins and might contribute to their biological roles in germ-line development.  相似文献   

13.
DNA and RNA helicases of superfamily I are characterized by seven conserved motifs. The five N-terminal motifs are separated from the two C-terminal ones by a spacer that is highly variable in both sequence and length, suggesting the existence of two distinct domains. Using computer methods for protein sequence analysis, we show that PhoH, an ATP-binding protein that is conserved in Escherichia coli and Mycobacterium leprae, is homologous to the putative N-terminal domain of the helicases, whereas the putative E. coli protein YjhR is homologous to the C-terminal domain. These findings suggest that the N-and C-terminal domains of superfamily I helicases have distinct activities, with only the N-terminal domain having the ATPase activity. It is speculated that PhoH and YjhR have evolved from helicases through deletion of the portions of the helicase genes coding for the C- and N-terminal domain, respectively.  相似文献   

14.
The presence of a papainlike cysteine protease (PCP) domain in the N-terminal region of the equine arteritis virus (EAV) replicase, which had been postulated on the basis of limited sequence similarities with cellular and viral thiol proteases, was confirmed by in vitro translation and mutagenesis studies. The EAV protease was found to direct an autoproteolytic cleavage at its C terminus which leads to the production of an approximately 30-kDa N-terminal replicase product (nsp1) containing the PCP domain. Amino acid residues Cys-164 and His-230 of the EAV replicase polyprotein were identified as the most likely candidates for the role of PCP catalytic residues. By means of N-terminal sequence analysis of a PCP cleavage product, derived from a bacterial expression system, it was shown that cleavage occurs between Gly-260 and Gly-261. No evidence for PCP-directed cleavages at other positions in the EAV replicase was obtained. In cotranslational and posttranslational trans-cleavage assays, neither EAV nsp1 nor its precursor was able to process the PCP cleavage site in trans.  相似文献   

15.
16.
Clérot D  Bernardi F 《Journal of virology》2006,80(22):11322-11330
The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3' overhang and 3'-to-5' polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein.  相似文献   

17.
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.  相似文献   

18.
Flaviviral NS3 is a multifunctional protein displaying N-terminal protease activity in addition to C-terminal helicase, nucleoside 5'-triphosphatase (NTPase), and 5'-terminal RNA triphosphatase (RTPase) activities. NS3 is held to support the separation of RNA daughter and template strands during viral replication. In addition, NS3 assists the initiation of replication by unwinding the RNA secondary structure in the 3' non-translated region (NTR). We report here the three-dimensional structure (at 3.1 A resolution) of the NS3 helicase domain (residues 186-619; NS3:186-619) from Kunjin virus, an Australian variant of the West Nile virus. As for homologous helicases, NS3:186-619 is composed of three domains, two of which are structurally related and held to host the NTPase and RTPase active sites. The third domain (C-terminal) is involved in RNA binding/recognition. The NS3:186-619 construct occurs as a dimer in solution and in the crystals. We show that NS3:186-619 displays both ATPase and RTPase activities, that it can unwind a double-stranded RNA substrate, being however inactive on a double-stranded DNA substrate. Analysis of different constructs shows that full length NS3 displays increased helicase activity, suggesting that the protease domain plays an assisting role in the RNA unwinding process. The structural interaction between the helicase and protease domain has been assessed using small angle X-ray scattering on full length NS3, disclosing that the protease and helicase domains build a rather elongated molecular assembly differing from that observed in the NS3 protein from hepatitis C virus.  相似文献   

19.
Mycobacterial UvrD2 is a DNA-dependent ATPase with 3' to 5' helicase activity. UvrD2 is an atypical helicase, insofar as its N-terminal ATPase domain resembles the superfamily I helicases UvrD/PcrA, yet it has a C-terminal HRDC domain, which is a feature of RecQ-type superfamily II helicases. The ATPase and HRDC domains are connected by a CxxC-(14)-CxxC tetracysteine module that defines a new clade of UvrD2-like bacterial helicases found only in Actinomycetales. By characterizing truncated versions of Mycobacterium smegmatis UvrD2, we show that whereas the HRDC domain is not required for ATPase or helicase activities in vitro, deletion of the tetracysteine module abolishes duplex unwinding while preserving ATP hydrolysis. Replacing each of the CxxC motifs with a double-alanine variant AxxA had no effect on duplex unwinding, signifying that the domain module, not the cysteines, is crucial for function. The helicase activity of a truncated UvrD2 lacking the tetracysteine and HRDC domains was restored by the DNA-binding protein Ku, a component of the mycobacterial NHEJ system and a cofactor for DNA unwinding by the paralogous mycobacterial helicase UvrD1. Our findings indicate that coupling of ATP hydrolysis to duplex unwinding can be achieved by protein domains acting in cis or trans. Attempts to disrupt the M. smegmatis uvrD2 gene were unsuccessful unless a second copy of uvrD2 was present elsewhere in the chromosome, indicating that UvrD2 is essential for growth of M. smegmatis.  相似文献   

20.
NS3 protein of hepatitis C virus plays the key role in the virus functioning. It possesses three enzymatic activities, namely protease activity, associated with N-terminal domain of the protein, and helicase/NTPase activities specific for C-terminal domain. Here, the effect of some polimethylenic derivatives of the nucleic bases on helicase and ATPase enzyme activities has been studied. Several of compounds tested displayed inhibitory activity towards NS3 helicase. However, most compounds demonstrated strong activating effect on ATPase activity of the enzyme as well as several other ATPases. The ATPase activating mechanism was not described earlier. The activation potency of the compounds depended on substrate/activator concentration ratio, and was maximal at the 1000:1. The activation mechanism scheme that allows us to explain phenomena observed is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号