首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brier S  Lemaire D  Debonis S  Forest E  Kozielski F 《Biochemistry》2004,43(41):13072-13082
Human Eg5, a mitotic motor of the kinesin superfamily, is involved in the formation and maintenance of the mitotic spindle. The recent discovery of small molecules that inhibit HsEg5 by binding to its catalytic motor domain leading to mitotic arrest has attracted more interest in Eg5 as a potential anticancer drug target. We have used hydrogen-deuterium exchange mass spectrometry and directed mutagenesis to identify the secondary structure elements that form the binding sites of new Eg5 inhibitors, in particular for S-trityl-l-cysteine, a potent inhibitor of Eg5 activity in vitro and in cell-based assays. The binding of this inhibitor modifies the deuterium incorporation rate of eight peptides that define two areas within the motor domain: Tyr125-Glu145 and Ile202-Leu227. Replacement of the Tyr125-Glu145 region with the equivalent region in the Neurospora crassa conventional kinesin heavy chain prevents the inhibition of the Eg5 ATPase activity by S-trityl-l-cysteine. We show here that S-trityl-l-cysteine and monastrol both bind to the same region on Eg5 by induced fit in a pocket formed by helix alpha3-strand beta5 and loop L5-helix alpha2, and both inhibitors trigger similar local conformational changes within the interaction site. It is likely that S-trityl-l-cysteine and monastrol inhibit HsEg5 by a similar mechanism. The common inhibitor binding region appears to represent a "hot spot" for HsEg5 that could be exploited for further inhibitor screening.  相似文献   

2.
Nitric oxide synthase (NOS) inhibitors are potential drug candidates because it has been well demonstrated that excessive production of nitric oxide critically contributes to a range of diseases. Most inhibitors have been screened in vitro using recombinant enzymes, leading to the discovery of a variety of potent compounds. To make inhibition studies more physiologically relevant and bridge the gap between the in vitro assay and in vivo studies, we report here a cellular model for screening NOS inhibitors. Stable transformants were generated by overexpressing rat neuronal NOS in HEK 293T cells. The enzyme was activated by introducing calcium ions into cells, and its activity was assayed by determining the amount of nitrite that was formed in culture medium using the Griess reagent. We tested a few NOS inhibitors with this assay and found that the method is sensitive, versatile, and easy to use. The cell-based assay provides more information than in vitro assays regarding the bioavailability of NOS inhibitors, and it is suitable for high-throughput screening.  相似文献   

3.
A simple fluorescence method is reported for the detection of colloidal aggregate formation in solution, with specific applications to determine the critical micelle concentration (CMC) of surfactants and detect small-molecule promiscuous inhibitors. The method exploits the meniscus curvature changes in high-density multiwell plates associated with colloidal changes in solution. The shape of the meniscus has a significant effect on fluorescence intensity when detected using a top-read fluorescence plate reader because of the effect of total internal reflection on fluorescence emission through a curved liquid surface. A dynamic range of 60% is calculated and observed and is measured with a relative sensitivity of 2%. Facile determination of the CMC of a variety of surfactants is demonstrated, as well as a screening assay for aggregate forming properties of small drug-like compounds, a common cause of promiscuous inhibition in high-throughput screening (HTS) enzyme inhibitor assays. Our preliminary results show a potential HTS assay with Z' factor of 0.76, with good separation between aggregating and nonaggregating small molecules. The method combines the high sensitivity and universality of classic surface tension methods with simplicity and high-throughput determination, enabling facile detection of molecular interactions involving a change in liquid or solid surface character.  相似文献   

4.
NIMA (never in mitosis arrest)-related kinase 2 (Nek2) is a serine/threonine kinase required for centrosome splitting and bipolar spindle formation during mitosis. Currently, two in vitro kinase assays are commercially available: (i) a radioactive assay from Upstate Biotechnology and (ii) a nonradioactive fluorescence resonance energy transfer (FRET) assay from Invitrogen. However, due to several limitations such as radioactive waste management and lower sensitivity, a need for more robust nonradioactive assays would be ideal. Accordingly, we have developed four quantitative and sensitive nonradioactive Nek2 in vitro kinase assays: (i) a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) using peptides identified from a physiologically relevant protein substrate, (ii) DELFIA using Nek2 itself, (iii) a homogeneous time-resolved FRET assay termed LANCE, and (iv) A method of detecting phosphorylated products by HPLC. The DELFIA and LANCE assays are robust in that they generated more than 10-fold and 20-fold increases in signal-to-noise ratios, respectively, and are amenable to robotic high-throughput screening platforms. Validation of all four assays was confirmed by identifying a panel of small molecule ATP competitive inhibitors from an internal corporate library. The most potent compounds consistently demonstrated less than 100 nM activity regardless of the assay format and therefore were complementary. In summary, the Nek2 in vitro time-resolved FRET kinase assays reported are sensitive, quantitative, reproducible and amenable to high-throughput screening with improved waste management over radioactive assays.  相似文献   

5.
A high-throughput, competitive fluorescence polarization immunoassay has been developed for the detection of methyltransferase activity. The assay was designed to detect S-adenosylhomocysteine (AdoHcy), a product of all S-adenosylmethionine (AdoMet)-utilizing methyltransferase reactions. We employed commercially available anti-AdoHcy antibody and fluorescein-AdoHcy conjugate tracer to measure AdoHcy generated as a result of methyltransferase activity. AdoHcy competes with tracer in the antibody/tracer complex. The release of tracer results in a decrease in fluorescence polarization. Under optimized conditions, AdoHcy and AdoMet titrations demonstrated that the antibody had more than a 150-fold preference for binding AdoHcy relative to AdoMet. Mock methyltransferase reactions using both AdoHcy and AdoMet indicated that the assay tolerated 1 to 3 microM AdoMet. The limit of detection was approximately 5 nM (0.15 pmol) AdoHcy in the presence of 3 muM AdoMet. To validate the assay's ability to quantitate methyltransferase activity, the methyltransferase catechol-O-methyltransferase (COMT) and a known selective inhibitor of COMT activity were used in proof-of-principle experiments. A time- and enzyme concentration-dependent decrease in fluorescence polarization was observed in the COMT assay that was developed. The IC(50) value obtained using a selective COMT inhibitor was consistent with previously published data. Thus, this sensitive and homogeneous assay is amenable for screening compounds for inhibitors of methyltransferase activity.  相似文献   

6.
Kinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction. In the research presented here, 1536-well format time-resolved fluorescence resonance energy transfer (TR-FRET) and LK assays were created to identify novel Rho-associated kinase II (ROCK-II) inhibitors. HTS campaigns for both assays were conducted in this miniaturized format. It was found that both assays were able to consistently reproduce the expected pharmacology of inhibitors known to be specific to ROCK-II (fasudil IC50: 283 +/- 27 nM and 336 +/- 54 nM for TR-FRET and LK assays, respectively; Y-27632 IC50: 133 +/- 7.8 nM and 150 +/- 22 nM for TR-FRET and LK assays, respectively). In addition, both assays proved robust for HTS efforts, demonstrating excellent plate Z' values during the HTS campaign (0.84 +/- 0.03; 0.72 +/- 0.05 for LK and TR-FRET campaigns, respectively). Both formats identified scaffolds of known and novel ROCK-II inhibitors with similar sensitivity. A comparison of the performance of these 2 assay formats in an HTS campaign was enabled by the existence of a subset of 25,000 compounds found in both our institutional and the Molecular Library Screening Center Network screening files. Analysis of the HTS campaign results based on this subset of common compounds showed that both formats had comparable total hit rates, hit distributions, amount of hit clusters, and format-specific artifact. It can be concluded that both assay formats are suitable for the discovery of ROCK-II inhibitors, and the choice of assay format depends on reagents and/or screening technology available.  相似文献   

7.
In addition to kinases and G protein-coupled receptors, proteases are one of the main targets in modern drug discovery. Caspases and viral proteases, for instance, are potential targets for new drugs. To satisfy the current need for fast and sensitive high-throughput screening for inhibitors, new homogeneous protease assays are needed. We used a caspase-3 assay as a model to develop a homogeneous time-resolved fluorescence quenching assay technology. The assay utilizes a peptide labeled with both a luminescent europium chelate and a quencher. Cleavage of the peptide by caspase-3 separates the quencher from the chelate and thus recovers europium fluorescence. The sensitivity of the assay was 1 pg/microl for active caspase-3 and 200 pM for the substrate. We evaluated the assay for high-throughput usage by screening 9600 small-molecule compounds. We also evaluated this format for absorption/distribution/metabolism/excretion assays with cell lysates. Additionally, the assay was compared to a commercial fluorescence caspase-3 assay.  相似文献   

8.
Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-(32)P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on F?rster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC(50) values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC(50) values in the submicromolar range.  相似文献   

9.
A range of various assays to measure chemosusceptibility of Plasmodium falciparum have been described in the literature. As the screening of a plethora of compounds for antiplasmodial activity is urgently needed and becomes a constantly increasing routine analysis, a test system has to fulfill the following requirements: sensitivity, reliability, simplicity of performance, high-throughput compatibility, and cost-effectiveness. Here, we describe an assay that fulfills all criteria and in which the fluorescent SYTOX Green dye is introduced to determine growth inhibition of Plasmodia in in vitro cultures.  相似文献   

10.
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain.  相似文献   

11.
DNA helicases are responsible for the unwinding of double-stranded DNA, facilitated by the binding and hydrolysis of 5'-nucleoside triphosphates. These enzymes represent an important class of targets for the development of novel anti-infective agents particularly because opportunity exists for synergy with existing therapies targeted at other enzymes involved in DNA replication. Unwinding reactions are conventionally monitored by low throughput, gel-based radiochemical assays; to overcome the limitations of low throughput to achieve comprehensive characterization of adenosine triphosphate (ATP)-dependent unwinding by viral and bacterial helicases and the screening for unwinding inhibitors, we have developed and validated homogeneous time-resolved fluorescence energy transfer (TRET) assays. Rapid characterization and screening of DNA helicase has been performed in 96- and 384-well plate densities, and the ability to assay in 1536-well format also demonstrated. We have successfully validated and are running full high throughput runs using 384-well TRET helicase assays, culminating in the identification of a range of chemically diverse inhibitors of viral and bacterial helicases. For screening in mixtures, we used a combination of quench correction routines and confirmatory scintillation proximity (SP) assays to eliminate false-positives due to the relatively high levels of compound quenching (unlike other Ln(3+)-based assays). This strategy was successful yet emphasised the need for further improvements in helicase assays.  相似文献   

12.
Post-translational modifications may lead to altered protein functional states by increasing the covalent variations on the side chains of many protein substrates. The histone tails represent one of the most heavily modified stretches within all human proteins. Peptidyl-arginine deiminase 4 (PAD4) has been shown to convert arginine residues into the non-genetically encoded citrulline residue. Few assays described to date have been operationally facile with satisfactory sensitivity. Thus, the lack of adequate assays has likely contributed to the absence of potent non-covalent PAD4 inhibitors. Herein a novel fluorescence-based assay that allows for the monitoring of PAD4 activity is described. A pro-fluorescent substrate analog was designed to link PAD4 enzymatic activity to fluorescence liberation upon the addition of the protease trypsin. It was shown that the assay is compatible with high-throughput screening conditions and has a strong signal-to-noise ratio. Furthermore, the assay can also be performed with crude cell lysates containing over-expressed PAD4.  相似文献   

13.
An integrated system has been developed for discovering potent inhibitors of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CL(pro)) by virtual screening correlating with surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) technologies-based assays. The authors screened 81,287 small molecular compounds against SPECS database by virtual screening; 256 compounds were subsequently selected for biological evaluation. Through SPR technology-based assay, 52 from these 256 compounds were discovered to show binding to SARS-CoV 3CL(pro). The enzymatic inhibition activities of these 52 SARS-CoV 3CL(pro) binders were further applied to FRET-based assay, and IC(50) values were determined. Based on this integrated assay platform, 8 new SARS-CoV 3CL(pro) inhibitors were discovered. The fact that the obtained IC(50) values for the inhibitors are in good accordance with the discovered dissociation equilibrium constants (K(D)s) assayed by SPR implied the reliability of this platform. Our current work is hoped to supply a powerful approach in the discovery of potent SARS-CoV 3CL(pro) inhibitors, and the determined inhibitors could be used as possible lead compounds for further research.  相似文献   

14.
The use of microarrays for parallel screening of nucleic acid profiles has become an industry standard. Similar efforts for screening protein-protein interactions are gaining momentum, however, they remain limited by the requirement for relatively large sample volumes. One strategy for overcoming this problem is to significantly decrease the size and consequently the sample volume of the protein interaction assay. We report here on our progress over the last two years in the construction of ultraminiaturized, functional protein capture assays. Each one micron spot in these array-based assays covers less than 1/1000(th) of the surface area of a conventional microarray spot while still maintaining enough antibodies to provide a useful dynamic range. These nanoarray assays can be read by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy. The size reduction realized by functional protein nanoarrays also creates opportunities for novel applications including highly multiplexed single cell analysis and integration with microfluidics and other "lab-on-a-chip" technologies.  相似文献   

15.
16.
Fluorescence polarization is one of the most commonly used homogeneous assay principles in drug discovery for screening of potential lead compounds. In this article, the fluorescence polarization technique is combined with 2-photon excitation of fluorescence. Theoretically, the use of 2-photon excitation of fluorescence increases the volumetric sensitivity and polarization contrast of fluorescence polarization assays. The work in this report demonstrates these predictions for an estrogen receptor ligand binding assay.  相似文献   

17.
In today's high-throughput screening (HTS) environment, an increasing number of assay detection technologies are routinely utilized in lead finding programs. Because of the relatively broad applicability of several of these technologies, one is often faced with a choice of which technology to utilize for a specific assay. The aim of this study was to address the question of whether the same compounds would be identified from screening a set of samples in three different versions of an HTS assay. Here, three different versions of a tyrosine kinase assay were established using scintillation proximity assay (SPA), homogeneous time-resolved fluorescence resonance energy transfer (HTR-FRET), and fluorescence polarization (FP) technologies. In this study, 30,000 compounds were evaluated in each version of the kinase assay in primary screening, deconvolution, and dose-response experiments. From this effort, there was only a small degree of overlap of active compounds identified subsequent to the deconvolution experiment. When all active compounds were then profiled in all three assays, 100 and 101 active compounds were identified in the HTR-FRET and FP assays, respectively. In contrast, 40 compounds were identified in the SPA version of the kinase assay, whereas all of these compounds were detected in the HTR-FRET assay only 35 were active in the FP assay. Although there was good correlation between the IC(50) values obtained in the HTR-FRET and FP assays, poor correlations were obtained with the IC(50) values obtained in the SPA assay. These findings suggest that significant differences can be observed from HTS depending on the assay technology that is utilized, particularly in assays with high hit rates.  相似文献   

18.
Virus assembly has not been routinely targeted in the development of antiviral drugs, in part because of the lack of tractable methods for screening in vitro. We have developed an in vitro assay of hepatitis B virus (HBV) capsid assembly, based on fluorescence quenching of dye-labeled capsid protein, for testing potential inhibitors. This assay is adaptable to high-throughput screening and can identify small-molecule inhibitors of virus assembly that prevent, inappropriately accelerate and/or misdirect capsid formation to yield aberrant particles. An in vitro primary screen has the advantage of identifying promising lead compounds affecting assembly without the requirement that they be taken up by cells in culture and be nontoxic. Our approach may facilitate the identification of antivirals targeting viruses other than HBV, such as avian influenza and HIV.  相似文献   

19.
Histone deacetylase (HDAC) enzymes modify the acetylation state of histones and other important proteins. Aberrant HDAC enzyme function has been implicated in many diseases, and the discovery and development of drugs targeting these enzymes is becoming increasingly important. In this article, the authors report the evaluation of homogeneous, single-addition, bioluminogenic HDAC enzyme activity assays that offer less assay interference by compounds in comparison to fluorescence-based formats. The authors assessed the key operational assay properties including sensitivity, scalability, reproducibility, signal stability, robustness (Z'), DMSO tolerance, and pharmacological response to standard inhibitors against HDAC-1, HDAC-3/NcoR2, HDAC-6, and SIRT-1 enzymes. These assays were successfully miniaturized to a 10 μL assay volume, and their suitability for high-throughput screening was tested in validation experiments using 640 drugs approved by the Food and Drug Administration and the Hypha Discovery MycoDiverse natural products library, which is a collection of 10 049 extracts and fractions from fermentations of higher fungi and contains compounds that are of low molecular weight and wide chemical diversity. Both of these screening campaigns confirmed that the bioluminogenic assay was high-throughput screening compatible and yielded acceptable performance in confirmation, counter, and compound/extract and fraction concentration-response assays.  相似文献   

20.
New developments in detection technologies are providing a variety of biomolecular screening strategies from which to choose. Consequently, we performed a detailed analysis of both separation-based and non-separation-based formats for screening nuclear receptor ligands. In this study, time-resolved fluorescence resonance energy transfer (TR-FRET), ALPHAScreen, and time-resolved fluorescence (TRF) assays were optimized and compared with respect to sensitivity, reproducibility, and miniaturization capability. The results showed that the ALPHAScreen system had the best sensitivity and dynamic range. The TRF assay was more time consuming because of the number of wash steps necessary. The TR-FRET assay had less interwell variation, most likely because of ratiometric measurement. Both the ALPHAScreen and the TR-FRET assays were miniaturized to 8-microl volumes. Of the photomultiplier tube-based readers, the ALPHAScreen reader (ALPHAQuest) presented the advantage of faster reading times through simultaneous reading with four photomultiplier tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号