首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In molluscs, the 3D vegetal blastomere acts as a developmental signaling center, or organizer, and is required to establish bilateral symmetry in the embryo. 3D is similar to organizing centers in other metazoans, but detailed comparisons are difficult, in part because its organizing function is poorly understood. To elucidate 3D function in a standardized fashion, we used monensin and brefeldin A (BFA) to rapidly and reversibly interfere with protein processing and secretion, thereby inhibiting the signaling interactions that underlie its specification and patterning. In the gastropods, Patella vulgata and Lymnaea stagnalis, the polyplacophoran, Mopalia muscosa, and the scaphopod, Antalis entalis, treatments initiated before the organizer-dependent onset of bilateral cleavage resulted in radialization of subsequent development. In radialized P. vulgata, L. stagnalis, and M. muscosa, organizer specification was blocked, and embryos failed to make the transition to bilateral cleavage. In all four species, the subsequent body plan was radially symmetric and was similarly organized about a novel aboral–oral axis. Our results demonstrate that brefeldin A (BFA) and monensin can be used to inhibit 3D’s organizing function in a comparative fashion and that, at least in M. muscosa, the organizer-dependent developmental architecture of the embryo predicts subsequent patterns of morphogenetic movements in gastrulation and, ultimately, the layout of the adult body plan.  相似文献   

2.
Gastropods are members of the Spiralia, a diverse group of invertebrates that share a common early developmental program, which includes spiral cleavage and a larval trochophore stage. The spiral cleavage program results in the division of the embryo into four quadrants. Specification of the dorsal (D) quadrant is intimately linked with body plan organization and in equally cleaving gastropods occurs when one of the vegetal macromeres makes contact with overlying micromeres and receives an inductive signal that activates a MAPK signaling cascade. Following the induction of the 3D macromere, the embryo begins to gastrulate and assumes a bilateral cleavage pattern. Here we inhibit MAPK activation in 3D with U0126 and examine its effect on the formation and patterning of the trochophore, using a suite of territory-specific markers. The head (pretrochal) region appears to maintain quadri-radial symmetry in U0126-treated embryos, supporting a role for MAPK signaling in 3D in establishing dorsoventral polarity in this region. Posterior (posttrochal) structures - larval musculature, shell and foot - fail to develop in MAPK inhibited trochophores. Inhibition of 3D specification by an alternative method - monensin treatment - yields similar abnormal trochophores. However, genes that are normally expressed in the ectodermal structures (shell and foot) are detected in U0126- and monensin-perturbed larvae in patterns that suggest that this region has latent dorsoventral polarity that is manifested even in the absence of D quadrant specification.  相似文献   

3.
Summary Spirally cleaving embryos in which the first two cleavages generate four equal-sized blastomeres remain radially symmetrical along their animal-vegetal axis until the interval between third and fourth quartet formation. At this time animal micromeres and vegetal macromeres contact each other as they elongate and occlude the central, fluid-filled cleavage cavity. The overlying micromeres focus their contacts onto one of the four macromeres, the presumptive 3D macromere, as it elongates to a central position within the embryo. We tested the hypothesis that this animal-vegetal interaction was causally involved in the determination of the symmetry properties in both the animal and vegetal hemispheres by reversibly inhibiting animal-vegetal contact at the 24 cell stage with cytochalasin-B. Embryos remained hollow throughout the treatment period and animal-vegetal interaction did not occur. After treatment, blastomere elongation occurred but no D quadrant macromere appeared and the vegetal hemisphere remained radialized. On the basis of cleavage and ciliation patterns of first quartet derivatives, treated embryos remained fully or partially radialized, showing a strong tendancy to develop as ventral quadrants. These results show that the quadrants of this equal-cleaving spiralian are not definitively determined until after the 24 cell stage and that animal-vegetal interaction is required for D quadrant determination. The mechanisms of symmetrization in the animal and vegetal hemispheres of equal-cleaving spiralians is also discussed.  相似文献   

4.
A small polar lobe forms at the first and second cleavage divisions in the gastropod mollusc Crepidula fornicata. These lobes normally fuse with the blastomeres that give rise to the D quadrant at the two- and four-cell stages (cells ultimately generating the 4d mesentoblast and D quadrant organizer). Significantly, removal of the small polar lobe had no noticeable effect on subsequent development of the veliger larva. The behavior of the polar lobe and characteristic early cell shape changes involving protrusion of the 3D macromere at the 24-cell suggest that the D quadrant is specified prior to the sixth cleavage division. On the other hand, blastomere deletion experiments indicate that the D quadrant is not determined until the time of formation of the 4d blastomere (mesentoblast). In fact, embryos can undergo regulation to form normal-appearing larvae if the prospective D blastomere or 3D macromere is removed. Removal of the 4d mesentoblast leads to highly disorganized, radial development. Removal of the first quartet micromeres at the 8-cell stage also leads to the development of radialized larvae. These findings indicate that the embryos of C. fornicata follow the mode of development exhibited by equal-cleaving spiralians, which involves conditional specification of the D quadrant organizer via inductive interactions, presumably from the first quartet micromeres.  相似文献   

5.
In annelids, molluscs, echiurans and sipunculids the establishment of the dorsal-ventral axis of the embryo is associated with D quadrant specification during embryogenesis. This specification occurs in two ways in these phyla. One mechanism specifies the D quadrant via the shunting of a set of cytoplasmic determinants located at the vegetal pole of the egg to one blastomere of the four cell stage embryo. In this case, at the first two cleavages of embryogenesis there is an unequal distribution of cytoplasm, generating one macromere which is larger than the others at the four cell stage. The D quadrant can also be specified by a contact mediated inductive interaction between one of the macromeres at the vegetal pole with micromeres at the animal pole of the embryo. This mechanism operates at a later stage of development than the cytoplasmic localization mechanism and is associated with a pattern of cleavage in which the first two cleavages are equal. An analysis of the phylogenetic relationships within these phyla indicates that the taxa which determine the D quadrant at an early cleavage stage by cytoplasmic localization tend to be derived and lack a larval stage or have larvae with adult characters. Those taxa where the D quadrant is specified by induction include the ancestral groups although some derived groups also use this mechanism. The pulmonate mollusc Lymnaea uses an inductive mechanism for specifying the D quadrant. In these embryos each of the four vegetal macromeres has the potential of becoming the D macromere; however under normal circumstances one of the two vegetal crossfurrow macromeres almost invariably becomes the D quadrant. Experiments are described here in which the size of one of the blastomeres of the four cell stage Lymnaea embryo is increased; this macromere invariably becomes the D quadrant. These experiments suggest that developmental change in relative blastomere size during the first two cleavages in spiralian embryos that normally cleave equally may have provided a route that has led to the establishment of the cytoplasmic localization mechanism of D quadrant formation.  相似文献   

6.
Many members of the spiralian phyla (i.e., annelids, echiurans, vestimentiferans, molluscs, sipunculids, nemerteans, polyclad turbellarians, gnathostomulids, mesozoans) exhibit early, equal cleavage divisions. In the case of the equal-cleaving molluscs, animal-vegetal inductive interactions between the derivatives of the first quartet micromeres and the vegetal macromeres specify which macromere becomes the 3D cell during the interval between fifth and sixth cleavage. The 3D macromere serves as a dorsal organizer and gives rise to the 4d mesentoblast. Even though it has been argued that this situation represents the ancestral condition among the Spiralia, these inductive events have only been documented in equal-cleaving molluscs. Embryos of the nemertean Cerebratulus lacteus also undergo equal, spiral cleavage, and the fate map of these embryos is similar to that of other spiralians. The role of animal first quartet micromeres in the establishment of the dorsal (D) cell quadrant was examined in C. lacteus by removing specific combinations of micromeres at the eight-cell stage. To follow the development of various cell quadrants, one quadrant was labeled with DiI at the four-cell stage, and specific first quartet micromeres were removed from discrete positions relative to the location of the labeled quadrant. The results indicate that the first quartet is required for normal development, as removal of all four micromeres prevented dorsoventral axis formation. In most cases, when either one or two adjacent first quartet micromeres were removed from one side of the embryo, the cell quadrant on the opposite side, with its macromere centered under the greatest number of the remaining animal micromeres, ultimately became the D quadrant. Twins containing duplicated dorsoventral axes were generated by removal of two opposing first quartet micromeres. Thus, any cell quadrant can become the D quadrant, and the dorsoventral axis is established after the eight-cell stage. While it is not yet clear exactly when key inductive interactions take place that establish the D quadrant in C. lacteus, contacts between the progeny of animal micromeres and vegetal macromeres are established during the interval between the fifth and sixth round of cleavage divisions (i.e., 32- to 64-cell stages). These findings argue that this mechanism of cell and axis determination has been conserved among equal-cleaving spiralians.  相似文献   

7.
Spiralian development is shared by several protostome phyla and characterized by regularities in early cleavage, fate map, and larva. Experimental evidence from multiple spiralian species implicates cells in the D quadrant lineage as the organizer of future axial development of the embryo. However, the mechanisms by which the D quadrant is specified differ between species with equal and unequal spiral cleavage. Equally cleaving mollusc embryos establish the D quadrant via cell-cell interactions between the micromeres and macromeres at the 24- to 36-cell stage. In unequally cleaving embryos, the D quadrant is established at the 4-cell stage via asymmetries in the first 2 cell divisions. We have begun to explore the molecular mechanisms of D quadrant patterning in spiralians. Previously, we showed that, in the unequally cleaving embryo of the mollusc Ilyanassa obsoleta, the MAPK pathway is activated and functionally required in 3D and also in the micromeres known to require a signal from 3D. Here, we examine the role of MAPK signaling in 4 spiralians with equal cleavage. In 3 equally cleaving molluscs, the chiton Chaetopleura, the limpet Tectura, and the snail Lymnaea, the MAPK pathway is activated in the 3D cell but not in the overlying micromeres. In the equally cleaving embryo of the polychaete annelid Hydroides, MAPK activation was not detected in the 3D macromere but was observed in one of its daughter cells, 4d. In addition, inhibiting Tectura MAPK activation disrupts differentiation of 3D and cells induced by it, supporting a functional role for MAPK in axis specification in equally cleaving spiralians. Thus, MAPK signaling may have a conserved role in the D quadrant organizer cell 3D in molluscs. However, there have been at least 2 evolutionary changes in the activation of the MAPK pathway during spiralian evolution. MAPK function in the Ilyanassa micromeres is a recent cooption and, since the divergence of annelids and molluscs, there has been a shift in onset of MAPK activation between 3D and 4d. We propose that this latter shift correlates with a change in the timing of specification of the secondary embryonic axis.  相似文献   

8.
Dorsoventral polarity in molluscan embryos can arise by two distinct mechanisms, where the mechanism employed is strongly correlated with the cleavage pattern of the early embryo. In species with unequal cleavage, the dorsal lineage, or "D quadrant", is determined in a cell-autonomous manner by the inheritance of cytoplasmic determinants. However, in gastropod molluscs with equal cleavage, cell-cell interactions are required to specify the fate of the dorsal blastomere. During the fifth cleavage interval in equally cleaving embryos, one of the vegetal macromeres makes exclusive contacts with the animal micromeres, and this macromere will give rise to the mesodermal precursor cell at the next division, thereby identifying the dorsal quadrant. This study examines D-quadrant determination in an equally cleaving species from a group of previously uninvestigated gastropods, the subclass Opisthobranchia. Blastomere ablation experiments were performed on embryos of Haminoea callidegenita to (i) determine the developmental potential of macromeres before and after fifth cleavage, and (ii) examine the role of micromere-macromere interactions in the establishment of bilateral symmetry. The results suggest that the macromeres are developmentally equivalent prior to fifth cleavage, but become nonequivalent soon afterward. The dorsoventral axis corresponds to the displacement of the micromeres over one macromere early in the fifth cleavage interval. This unusual cellular topology is hypothesized to result from constraints imposed on micromere-macromere interactions in an embryo that develops from a large egg and forms a stereoblastula (no cleavage cavity). Ablation of the entire first quarter of micromeres results in embryos which remain radially symmetrical in the vegetal hemisphere, indicating that micromere-macromere interactions are required for the elaboration of bilateral symmetry properties. Therefore, inductive interactions between cells may represent a general strategy for dorsoventral axis determination in equally cleaving gastropods.  相似文献   

9.
Embryos of the gastropod snail Crepidula fornicata exhibit a typical spiral cleavage pattern. Although a small polar lobe is formed at the first and second cleavage divisions, the embryo of C. fornicata exhibits a mode of development similar to that of equal-cleaving spiralians in which the D quadrant is conditionally specified by inductive interactions involving the derivatives of the first quartet micromeres. This study demonstrates that mitogen activated protein kinases, MAPK, are initially activated in the progeny of the first quartet micromeres, just prior to the birth of the third quartet (e.g., late during the 16-cell and subsequently during the 20-cell stages). Afterwards, MAPK is activated in 3D just prior to the 24-cell stage, transiently in 4d and finally in a subset of animal micromeres immediately following those stages. This pattern of MAPK activation differs from that reported for other spiralians. Using an inhibitor of MAPK kinase (MEK), we demonstrated that activated MAPK is required for the specification of the 3D macromere, during the late 16-cell through early 24-cell stages. This corresponds to the interval when the progeny of the first quartet micromeres specify the D quadrant macromere. Activated MAPK is not required in 3D later during the 24-cell stage or in the embryonic organizer, 4d, for its normal activity. Likewise, activated MAPK is not required in the animal micromeres during subsequent stages of development. Additional experiments suggest that the polar lobe, though not required for normal development, may play a role in restricting the activation of MAPK and biasing the specification of the 3D macromere.  相似文献   

10.
Barbara C. Boyer 《Hydrobiologia》1995,305(1-3):217-222
In spiralian embryos determination of the axes of bilateral symmetry is associated with D quadrant specification. This can occur late through equal cleavage and cell interactions (conditional specification) or by the four-cell stage through unequal cleavage and cytoplasmic localization (autonomous specification). Freeman & Lundelius (1992) suggest that in spiralian coelomates the former method is ancestral and the latter derived, with evolutionary pressure to shorten metamorphosis resulting in early D quadrant determination through unequal cleavage and appearance of adult features in the larvae. Because of the key phylogenetic position of the turbellarian platyhelminthes, understanding the method of axis specification in this group is important in evaluating the hypothesis. Polyclad development, with equal quartet spiral cleavage, is believed to represent the most primitive condition among living turbellarians and has been examined experimentally in Hoploplana inquilina. Blastomere deletions at the two and four-cell stage produce larvae that are abnormal in morphology and symmetry, indicating that early development is not regulative, and also establish that the embryo does not have an invariant cell lineage. Deletions of micromeres and macromeres at the eight-cell stage indicate that cell interactions are involved in dorso-ventral axis determination, with cross-furrow macromeres playing a more significant role than non-cross-furrow cells. The results support the idea that conditional specification is the primitive developmental mode that characterized the common ancestor of the turbellarians and spiralian coelomates. Evolutionary trends in development in polyclads and other turbellarian orders are discussed.  相似文献   

11.
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl?), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl? disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl? sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl? sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.  相似文献   

12.
Previous studies on neural induction have identified regionally localized inducing activities, signaling molecules, potential competence factors and various other features of this important, early differentiation event. In this paper, we have developed an improved model system for analyzing neural induction and patterning using transverse blastoderm isolates obtained from gastrulating chick embryos. We use this model to establish the timing of neural specification and the spatial distribution of perinodal cells having organizer activity. We show that a tissue that acts either as an organizer or as an inducer of an organizer is spatially co-localized with the prospective neuroectoderm immediately rostral to the primitive streak in the early gastrula. As the primitive streak elongates, this tissue with organizing activity and the prospective neuroectoderm rostral to the streak separate. Furthermore, we show that up to and through the mid-primitive streak stage (i.e., stage 3c/3+), the prospective neuroectoderm cannot self-differentiate (i.e. , express neural markers and acquire neural plate morphology) in isolation from tissue with organizer activity. Signals from the organizer and from other more caudal regions of the primitive streak act on the rostral prospective neuroectoderm and the latter gains potency (i.e., is specified) by the fully elongated primitive streak stage (i.e., stage 3d). Transverse blastoderm isolates containing non-specified, prospective neuroectoderm provide an improved model system for analyzing early signaling events involved in neuraxis initiation and patterning.  相似文献   

13.
 Embryos acquire axial properties (e.g., the animal-vegetal, dorsoventral and bilateral axes) at various times over the course of their normal developmental programs. In the spiral-cleaving nemertean, Cerebratulus lacteus, lineage tracing studies have shown that the dorsoventral axis is set up prior to the first cleavage division; however, blastomeres isolated at the two-cell stage will regulate to form apparently perfect, miniature pilidium larvae. We have examined the nature of axial specification in this organism by determining whether partial embryos retain the original embryonic/larval axial properties of the intact embryo, or whether new axial relationships are generated as a consequence of the regulatory process. Single blastomeres in two-cell stage embryos were injected with lineage tracer, and were then bisected along the second cleavage plane at the four-cell stage. Thus, the relationship between the plane of the first cleavage division and various developmental axes could be followed throughout development in the ”half-embryos”. While some embryo fragments appear to retain their original animal-vegetal and dorsoventral axes, many fragments generate novel axial properties. These results indicate that axial properties set up and used during normal development in C. lacteus can be completely reorganized during the course of regulation. While certain embryonic axes, such as the animal-vegetal and dorsoventral axes, appear to be set up prior to first cleavage, these axes and associated cell fates are not irreversibly fixed until later stages of development in normal intact embryos. In C. lacteus, the process whereby these properties are ultimately determined is apparently controlled by complex sets of cell-cell interactions. Received: 11 October 1996 / Accepted: 21 February 1997  相似文献   

14.
Origins of the other metazoan body plans: the evolution of larval forms   总被引:1,自引:0,他引:1  
Bilaterian animal body plan origins are not solely about adult forms. Most animals have larvae with body plans, ontogenies and ecologies distinct from adults. There are two primary hypotheses for larval origins. The first hypothesis suggests that the first animals were small pelagic forms similar to modern larvae, with adult bilaterian body plans evolved subsequently. The second hypothesis suggests that adult bilaterian body plans evolved first and that larval body plans arose by interpolation of features into direct-developing ontogenies. The two hypotheses have different consequences for understanding parsimony in evolution of larvae and of developmental genetic mechanisms. If primitive metazoans were like modern larvae and distinct adult forms evolved independently, there should be little commonality of patterning genes among adult body plans. However, sharing of patterning genes is observed. If larvae arose by co-option of adult bilaterian-expressed genes into independently evolved larval forms, larvae may show morphological convergence, but with distinct patterning genes, and this is observed. Thus, comparative studies of gene expression support independent origins of larval features. Precambrian and Cambrian embryonic fossils are also consistent with direct development of the adult as being primitive, with planktonic larvae arising during the Cambrian. Larvae have continued to co-opt genes and evolve new features, allowing study of developmental evolution.  相似文献   

15.
16.
How the radial body plan of echinoderms is related to the bilateral body plan of their deuterostome relatives, the hemichordates and the chordates, has been a long-standing problem. Now, using direct development in a sea urchin, I show that the first radially arranged structures, the five primary podia, form from a dorsal and a ventral hydrocoele at the oral end of the archenteron. There is a bilateral plane of symmetry through the podia, the mouth, the archenteron and the blastopore. This adult bilateral plane is thus homologous with the bilateral plane of bilateral metazoans and a relationship between the radial and bilateral body plans is identified. I conclude that echinoderms retain and use the bilateral patterning genes of the common deuterostome ancestor. Homologies with the early echinoderms of the Cambrian era and between the dorsal hydrocoele, the chordate notochord and the proboscis coelom of hemichordates become evident.  相似文献   

17.
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl2), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl2 disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior–posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl2 sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl2 sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.  相似文献   

18.
Echinoderms are unique among bilaterians for their derived, nonbilateral adult body plan. Their radial symmetry emerges from the bilateral larval body plan by the establishment of a new axis, the adult oral–aboral axis, involving local mesoderm–ectoderm interactions. We examine the mechanisms underlying this transition in the direct-developing sea urchin Heliocidaris erythrogramma. Adult ectoderm arises from vestibular ectoderm in the left vegetal quadrant. Inductive signals from the left coelom are required for adult ectodermal development but not for initial vestibule formation. We surgically removed gastrula archenteron, making whole-ectoderm explants, left-, right-, and animal-half ectoderm explants, and recombinants of these explants with left coelom. Vestibule formation was analyzed morphologically and with radioactive in situ hybridization with HeET-1, an ectodermal marker. Whole ectodermal explants in the absence of coelom developed vestibules on the left side or ventrally but not on the right side, indicating that left–right polarity is ectoderm autonomous by the gastrula stage. However, right-half ectodermal explants robustly formed vestibules that went on to form adult structures when recombined with the left coelom, indicating that the right side retains vestibule-forming potential that is normally suppressed by signals from the left-side ectoderm. Animal-half explants formed vestibules only about half the time, demonstrating that animal–vegetal axis determination occurs earlier. However, when combined with the left coelom, animal-half ectoderm always formed a vestibule, indicating that the left coelom can induce vestibule formation. This suggests that although coelomic signals are not required for vestibule formation, they may play a role in coordinating the coelom–vestibule interaction that establishes the adult oral–aboral axis.  相似文献   

19.
During vertebrate development, an organizing signaling center, the isthmic organizer, forms at the boundary between the midbrain and hindbrain. This organizer locally controls growth and patterning along the anteroposterior axis of the neural tube. On the basis of transplantation and ablation experiments in avian embryos, we show here that, in the caudal midbrain, a restricted dorsal domain of the isthmic organizer, that we call the isthmic node, is both necessary and sufficient for the formation and positioning of the roof plate, a signaling structure that marks the dorsal midline of the neural tube and that is involved in its dorsoventral patterning. This is unexpected because in other regions of the neural tube, the roof plate has been shown to form at the site of neural fold fusion, which is under the influence of epidermal ectoderm derived signals. In addition, the isthmic node contributes cells to both the midbrain and hindbrain roof plates, which are separated by a boundary that limits cell movements. We also provide evidence that mid/hindbrain roof plate formation involves homeogenetic mechanisms. Our observations indicate that the isthmic organizer orchestrates patterning along the anteroposterior and the dorsoventral axis.  相似文献   

20.
Organizers and organizing centers play critical roles in axis formation and patterning during the early stages of embryogenesis in many bilaterians. The presence and activity of an organizer was first described in adult Hydra about 100 years ago, and in the following decades organizer regions were identified in a number of bilaterian embryos. In an adult Hydra, the cells of the body column are constantly in the mitotic cycle resulting in continuous displacement of the tissue to the extremities where it is sloughed. In this context, the head organizer located in the hypostome is continuously active sending out signals to maintain the structure and morphology of the head, body column and foot of the animal. The molecular basis of the head organizer involves the canonical Wnt pathway, which acts in a self-renewing manner to maintain itself in the context of the tissue dynamics of Hydra. During bud formation, Hydra's mode of asexual reproduction, a head organizer based on the canonical Wnt pathway is set up to initiate and control the development of a new Hydra. As this pathway plays a central role in vertebrate embryonic organizers, its presence and activity in Hydra indicate that the molecular basis of the organizer arose early in metazoan evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号