首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the Maillard reaction of amino acids and proteins as well as its consequences in vivo has been thoroughly investigated, little attention has so far been paid to the glycation of aminophospholipids such as phosphatidylethanolamine (PE) or phosphatidylserine (PS), which are essential for structure and functionality of biological membranes. PE-derived glucosylamines (Schiff-PEs) and aminoketoses (Amadori-PEs) have now for the first time been simultaneously identified and quantified in erythrocytes from diabetics and healthy individuals by liquid chromatography-electrospray mass spectrometry (LC-(ESI)MS). The amounts of glycated PE (gPE) were significantly higher in diabetics (0.18-34.2 mol% Schiff-PE and 0.047-0.375 mol% Amadori-PE) than in controls (0.12-3.99 mol% Schiff-PE and 0.018-0.055 mol% Amadori-PE). A positive correlation between fructosylated hemoglobin (HbA(1c)) and the gPE levels was established. No advanced glycation endproducts (AGEs) like 5-hydroxymethylpyrrole-2-carbaldehyde (pyrrole-PE), carboxymethyl (CM-PE), or carboxyethyl (CE-PE) derivatives were detected. To investigate the influence of gPE on lipid peroxidation of biological membranes, liposomes consisting of soy-PE and synthetically prepared Amadori-PE (16:0-16:0) were incubated for several days and the formation of oxidation products was monitored. It could be shown that Amadori-PE extensively promotes lipid peroxidation even in the absence of transition metal ions like Cu(2+) and Fe(3+). Oxidative damage to membrane lipids therefore is supposed to be at least partially caused by the glycation of aminophospholipids.  相似文献   

2.
Peroxidized phospholipid-mediated cytotoxity is involved in the pathophysiology of a number of diseases [i.e., the abnormal increase of phosphatidylcholine hydroperoxide (PCOOH) found in the plasma of type 2 diabetic patients]. The PCOOH accumulation may relate to Amadori-glycated phosphatidylethanolamine (deoxy-D-fructosyl PE, or Amadori-PE), because Amadori-PE causes oxidative stress. However, lipid glycation inhibitor has not been discovered yet because of the lack of a lipid glycation model useful for inhibitor screening. We optimized and developed a lipid glycation model considering various reaction conditions (glucose concentration, temperature, buffer type, and pH) between PE and glucose. Using the developed model, various protein glycation inhibitors (aminoguanidine, pyridoxamine, and carnosine), antioxidants (ascorbic acid, alpha-tocopherol, quercetin, and rutin), and other food compounds (L-lysine, L-cysteine, pyridoxine, pyridoxal, and pyridoxal 5'-phosphate) were evaluated for their antiglycative properties. Pyridoxal 5'-phosphate and pyridoxal (vitamin B(6) derivatives) were the most effective antiglycative compounds. These pyridoxals could easily be condensed with PE before the glucose/PE reaction occurred. Because PE-pyridoxal 5'-phosphate adduct was detectable in human red blood cells and the increased plasma Amadori-PE concentration in streptozotocin-induced diabetic rats was decreased by dietary supplementation of pyridoxal 5'-phosphate, it is likely that pyridoxal 5'-phosphate acts as a lipid glycation inhibitor in vivo, which possibly contributes to diabetes prevention.  相似文献   

3.
Fructosamines, also known as Amadori products, are formed by the condensation of glucose with the amino group of amino acids or proteins. These compounds are precursors of advanced glycation end products (AGEs) that can be formed either endogenously during aging and diabetes, and exogenously in heat-processed food. The negative effects of dietary AGEs on human health as well as their negative impact on the quality of dairy products have been widely described, therefore specific tools able to prevent the formation of glycation products are needed. Two fructosamine oxidase enzymes isolated from Aspergillus sp. namely, Faox I and Faox II catalyze the oxidative deglycation of Amadori products representing a potential tool for inhibiting the Maillard reaction in dairy products. In this paper, the ability of recombinant Faox I and II in limiting the formation of carboxy-methyl lysine (CML) and protein-bound hydroxymethyl furfurol (b-HMF) in a commercial UHT low lactose milk and a beta-lactoglobulin (β-LG) glucose model system was investigated. Results show a consistent reduction of CML and b-HMF under all conditions. Faox effects were particularly evident on b-HMF formation in low lactose commercial milk. Peptide analysis of the β-LG glucose system identified some peptides, derived from cyanogen bromide hydrolysis, as suitable candidates to monitor Faox action in milk-based products. All in all data suggested that non-enzymatic reactions in dairy products might be strongly reduced by implementing Faox enzymes.  相似文献   

4.
A new derivatization reagent, Fmoc-hydrazine, has been synthesized from the reaction of Fmoc-chloroformate with hydrazine as a precolumn fluorometric labeling reagent for reducing sugars such as glucose, galactose, mannose, fructose, fucose, ribose, xylose, arabinose, lactose, and maltose. The optimization of derivatization conditions was examined in detail. Using a reversed-phase high-performance C-8 column and a mobile phase consisting of acetonitrile-aqueous acetic acid, seven sugar derivatives were separated under either isocratic or gradient conditions within 20 min. The Fmoc-hydrazine and sugar Fmoc-hydrazone derivatives exhibit excellent stability. The extent of the hydrazone formation was 77 and 82% for mannose and fucose as assessed by Dionex high-performance anion-exchange chromatography with pulsed amperometric detection. Linear calibration graphs were established in the range from 0.5 to 2 pmol and 12 to 110 pmol for individual sugar derivatives. The determination limits were 0.05-0.09 pmol for mannose, galactose, and ribose; 0.1 pmol for maltose, xylose, and glucose; 0.2 pmol for fucose and lactose; 0.3 pmol for arabinose; and 0.4 pmol for fructose. The component monosaccharides of ultramicroquantities of two glycoproteins (e.g., from 7 ng fetuin and ovalbumin) were determined in the subpicomole range.  相似文献   

5.
Lipid glycation is a non-enzymatic reaction between glucose and the free amino group of aminophospholipids, particularly in chronic hyperglycemia. Glycated phosphatidylethanolamine have been found in plasma and atherosclerotic plaques of diabetic patients and was correlated with increased oxidative and inflammatory stress in diabetes. However, the biological roles of glycated lipids are not fully understood. In this study, we evaluated the effect of palmitoyl-oleoyl-phosphatidylethanolamine (POPE) oxidation, glycation, and glycoxidation products on monocyte and myeloid dendritic cell stimulation. Flow cytometry analysis was used to evaluate the capability of each modified PE to induce the expression of different cytokines (IL-1β, IL-6, IL-8, MIP-1β, and TNF-α) in monocytes or myeloid dendritic cells (mDC). Our results showed that PE modifications induced different effect on the stimulation of cells producing cytokines. All PE modifications induced higher frequencies of cytokine-producing cells than basal state. Higher stimulation levels were obtained with glycated POPE, followed by glycoxidized POPE. In contrast, oxidized POPE negatively regulated the frequency of monocytes and mDC producing cytokines, when compared with non-modified POPE. In conclusion, we verified that PE glycation, compared with oxidation and glycation plus oxidation, had higher ability to stimulate monocytes and mDC. Thus detection of increased levels of PE glycation in diabetes could be considered a predictor of a inflammatory state.  相似文献   

6.
An amino group of phosphatidylethanolamine (PE) is considered as a target for nonenzymatic glycation, and the potential involvement of lipid glycation in the pathogenesis of diabetic complications has generated interest. However, unlike an early glycation product of PE (Amadori-PE), the occurrence and roles of advanced glycation end products of PE (AGE-PE) in vivo have been unclear. Here, we developed an LC-MS/MS method for the analysis of AGE-PE [carboxymethyl-PE (CM-PE) and carboxyethyl-PE (CE-PE)]. Collision-induced dissociation of CM-PE and CE-PE produced characteristic ions, permitting neutral loss scanning (NLS) and multiple reaction monitoring (MRM) of AGE-PE. By NLS analysis, a series of AGE-PE molecular species was detected in human erythrocytes and blood plasma. In LC-MS/MS analysis, MRM enabled the separation and determination of the predominant AGE-PE species. Between healthy subjects and diabetic patients, no significant differences were observed in AGE-PE concentrations in erythrocytes and plasma, whereas Amadori-PE concentrations were higher in diabetic patients. These results provide direct evidence for the presence of AGE-PE in human blood, and indicated that, compared with Amadori-PE, AGE-PE is less likely to be accumulated in diabetic blood. The presently developed LC-MS/MS method appears to be a powerful tool for understanding in vivo lipid glycation and its pathophysiological consequence.  相似文献   

7.
Peroxidized phospholipid-mediated cytotoxicity is involved in the pathophysiology of diseases [i.e., an abnormal increase of phosphatidylcholine hydroperoxide (PCOOH) in plasma of type 2 diabetic patients]. The PCOOH accumulation may relate to Amadori-glycated phosphatidylethanolamine (Amadori-PE; deoxy-D-fructosyl phosphatidylethanolamine), because Amadori-PE causes oxidative stress. However, the occurrence of lipid glycation products, including Amadori-PE, in vivo is still unclear. Consequently, we developed an analysis method of Amadori-PE using a quadrupole/linear ion-trap mass spectrometer, the Applied Biosystems QTRAP. In positive ion mode, collision-induced dissociation of Amadori-PE produced a well-characterized diglyceride ion ([M+H-303]+) permitting neutral loss scanning and multiple reaction monitoring (MRM). When lipid extract from diabetic plasma was infused directly into the QTRAP, Amadori-PE molecular species could be screened out by neutral loss scanning. Interfacing liquid chromatography with QTRAP mass spectrometry enabled the separation and determination of predominant plasma Amadori-PE species with sensitivity of approximately 0.1 pmol/injection in MRM. The plasma Amadori-PE level was 0.08 mol% of total PE in healthy subjects and 0.15-0.29 mol% in diabetic patients. Furthermore, plasma Amadori-PE levels were positively correlated with PCOOH (a maker for oxidative stress). These results show the involvement between lipid glycation and lipid peroxidation in diabetes pathogenesis.  相似文献   

8.
The compounds resulting from the reaction of glucose with proteins (advanced glycation products) can be important markers of chronic diabetic complications. To test the possible diagnostic value of advanced glycation products containing the furoyl moiety, collagen samples from diabetic and healthy rats were analyzed by parent ion spectroscopy. In our study, we compared normal collagen, diabetic collagen and normal collagen incubated with different glucose concentrations and we employed different hydrolysis procedures (HCl and proteinase). Mass spectroscopic measurements performed on hydrolyzed samples showed that either different samples or different hydrolysis procedures produce a similar set of furoyl-containing compounds. 2-(2-Furoyl)-4(5)-(2-furanyl)-1H-imidazole (FFI) which has been reported to be one of the advanced glycation products, was never found in any of the samples examined. Hence neither FFI nor furoyl-containing molecules can be considered markers of advanced glycation processes.  相似文献   

9.
The compounds resulting from the reaction of glucose with proteins (advanced glycation products) can be important markers of chronic diabetic complications. To test the possible diagnostic value of advanced glycation products containing the furoyl moiety, collagen samples from diabetic and healthy rats were analyzed by parent ion spectroscopy. In our study, we compared normal collagen, diabetic collagen and normal collagen incubated with different glucose concentrations and we employed different hydrolysis procedures (HCl and proteinase). Mass spectroscopic measurements performed on hydrolyzed samples showed that either different samples or different hydrolysis procedures produce a similar set of furoyl-containing compounds. 2-(2-Furoyl)-4(5)-(2-furanyl)-1H-imidazole (FFI) which has been reported to be one of the advanced glycation products, was never found in any of the samples examined. Hence neither FFI nor furoyl-containing molecules can be considered markers of advanced glycation processes.  相似文献   

10.
11.
It is well established that oxidative modification of low-density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. To examine the influence of different agents which may influence LDL-glycation and oxidation, experiments including glycation with glucose, glucose 6-phosphate, metal chelators (EDTA) and antioxidants (BHT) were performed. The influence of time dependence on the glycation process and the alteration of the electrophoretic mobility of LDL under diverse glycation and/or oxidation conditions was also investigated. The formation of conjugated dienes and levels of lipid peroxides in these different LDL-modifications were estimated. The copper-induced oxidation of LDL in vitro was determined by measurement of thiobarbituric acid reactive substances (TBARS) and expressed as nmol MDA/mg of LDL protein. We found that glycated LDL is more prone to oxidation than native LDL. Using native LDL, the maximal oxidation effect was found to reach a value of 49.72 nmol MDA/mg protein after 8 h. The maximum oxidation of the 31 days, glycated LDL with glucose was 71.76 nmol MDA/mg protein amounting to 144.33% of the value found for native LDL. In the case of glucose 6-phosphate glycation, the maximum oxidation under the same conditions amounted to 173.77% of the value found for native LDL. To measure the extent of glycation, fluorescence of advanced glycation end products (AGEs) was determined (370 nm excitation and 440 nm emission). The most potent glycation agent was glucose 6-phosphate leading to the formation of very high amounts of AGEs. This process was promoted in the absence of EDTA, which prevents the oxidative cleavage of modified Amadori products (ketoamines) to AGEs. We therefore conclude that both processes, glycation and oxidation, result in the modification of LDL. The lower the glycation-rate (+/- EDTA) as measured by relative fluorescence units RFU (generation of AGEs), the lower the additional oxidation rate after glycation as measured by TBARS (generation of MDA equivalents). Glycation and/or oxidation change the electrophoretic mobility of LDL.  相似文献   

12.
SUMMARY

Human atherosclerotic plaques are characterized by a massive deposition of lipid within arterial walls. The lipids accumulated are partly oxidized, as assessed by gas chromatography of lipids and their oxidation products. Both advancing age and diabetes mellitus are associated with an increased prevalence and severity of atherosclerosis.

In diabetes mellitus the development of secondary complications appear to be increased by poor glucose control. Indeed, the post-translational modification of protein by non-enzymatic glycation may provide the link between abnormal glucose control and diabetic complications. For atherosclerosis however, the relationship between glucose control and disease is unclear, with evidence available to support and discount such a link. To study protein glycation in a condition associated with a significant level of lipid oxidation products poses several methodological problems, most of which are associated with interference by lipid-derived aldehydes. Many chemical assays of protein glycation monitor aldehydic products common to the chemistry of both protein glycation and lipid oxidation. Studies of protein glycation in human atheroma, obtained at necropsy, are presented which make use of a commercially available boronic acid affinity-based chromatographic assay of glycated protein. The commercially available affinity-based chromatographic assay of glycated protein appears to be free from such interference and may well prove useful in the study of other conditions in which the non-enzymatic glycation of protein is suspected.  相似文献   

13.
Glyceraldehyde (GLA) was determined in glucose degradation and glycation. GLA was detected as a decahydroacridine-1,8-dione derivative on reversed phase HPLC using cyclohexane-1,3-dione derivatizing reagent. The glucose-derived GLA level was higher than the glycation-derived GLA level, because GLA was converted to intermediates and advanced glycation end products (AGE) in glycation. GLA was also generated from 3-deoxyglucosone and glucosone as intermediates of glucose degradation and glycation. This study suggests that glyceraldehyde is generated by hyperglycemia in diabetes, and that it is also formed in medicines such as peritoneal dialysis solution.  相似文献   

14.
Glyceraldehyde (GLA) was determined in glucose degradation and glycation. GLA was detected as a decahydroacridine-1,8-dione derivative on reversed phase HPLC using cyclohexane-1,3-dione derivatizing reagent. The glucose-derived GLA level was higher than the glycation-derived GLA level, because GLA was converted to intermediates and advanced glycation end products (AGE) in glycation. GLA was also generated from 3-deoxyglucosone and glucosone as intermediates of glucose degradation and glycation. This study suggests that glyceraldehyde is generated by hyperglycemia in diabetes, and that it is also formed in medicines such as peritoneal dialysis solution.  相似文献   

15.
Inverted lipid micelles have been proposed, among other biological functions, to constitute the structural basis of the so-called tight junctions, a special cell cell contact found in epithelia and endothelial, which act as a barrier for the paracellular solute passage. As a model system for the opening and closing of this gate, we investigated the formation of the inverted hexagonal phase (HII phase) in lipid bilayer systems consisting of egg phosphatidylethanolamine (egg PE) and mixed egg PE/bovine brain phosphatidylserine (BBPS) membranes. The formation of the HII phase was modulated by Ca2+ ions, pH, basic amino acids and protamine. The lamellar-HII phase transition temperature TH of pure egg PE membranes at pH 7.0 was lowered with increasing Ca2+ concentration. This effect was attenuated by the presence of 50 mM lysine methyl ester. In the mixed lipid system, this effect was also observed, but even more pronounced. However this effect could be compensated for by raising the Ca2+ concentration from 2 to 10 mM. This was not observed in the pure PE system. In the absence of Ca2+, lysine methyl ester and protamine lowered TH in both monocomponent and mixed lipid systems, whereas lysine caused the opposite effect. The pH-dependence of mixed lipid systems, which were investigated up to a BBPS content of 20 mol%, clearly shows that increasing PS content stabilizes the lamellar phase even at low pH. The results obtained with model membranes are discussed with respect to biological implications of the lamellar-HII phase transition for the modulation of tight junction stability.  相似文献   

16.
The effect of aminophospholipid glycation on lipid order and lipid bilayer hydration was investigated using time-resolved fluorescence spectroscopy. The changes of lipid bilayer hydration were estimated both from its effect on the fluorescence lifetime of The 1-[4-(trimethylammonium)-phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) and 1,6-diphenylhexa-1,3,5-triene (DPH) and using solvatochromic shift studies with 1-anilinonaphthalene-8-sulfonic acid. The head-group and acyl chain order were determined from time-resolved fluorescence anisotropy measurements of the TMA-DPH and DPH. The suspensions of small unilamellar vesicles (with phosphatidylethanolamine/phosphatidylcholine molar ratio 1:2.33) were incubated with glyceraldehyde and it was found that aminophospholipids react with glyceraldehyde to form products with the absorbance and the fluorescence properties typical for protein advanced glycation end products. The lipid glycation was accompanied by the progressive oxidative modification of unsaturated fatty acid residues. It was found that aminophospholipid glycation increased the head-group hydration and lipid order in both regions of the membrane. The lipid oxidation accompanying the lipid glycation affected mainly the lipid order, while the effect on the lipid hydration was small. The increase in the lipid order was presumably the result of two effects: (1) the modification of head-groups of phosphatidylethanolamine by glycation; and (2) the degradation of unsaturated fatty acid residues by oxidation.  相似文献   

17.
Both repression and induction of substrate utilization have been the subject of many basic research investigations employing pure cultures. In this investigation these effects were studied using heterogeneous microbial populations prevalent in such biological treatment processes as activated sludge systems.Diauxic substrate removal by activated sludge was observed in a multicomponent medium consisting of glucose and sorbitol. The sludge was acclimated solely to sorbitol; however, the presence of glucose blocked sorbitol removal until glucose was completely utilized. Both diphasic and triphasic oxygen utilization was shown for activated sludges metabolizing multicomponent synthetic wastes consisting of glucose, melibiose, and lactose. It appears from these studies that melibiose utilization was suppressed by the presence of glucose and, although melibiose induced acclimation to lactose, the presence of melibose suppressed lactose utilization. Studies were also conducted using glycogen and starch systems in which it was found that acclimation to either compound conferred immediate acclimation to the other. It was also found that loss of acclimation to lactose was a passive phenomenon and its kinetics could be predicted on the basis of simple diluting out of the enzyme(s) responsible for such acclimation.  相似文献   

18.
Hsieh CL  Yang MH  Chyau CC  Chiu CH  Wang HE  Lin YC  Chiu WT  Peng RY 《Bio Systems》2007,88(1-2):92-100
Experimentation with a physiomimic system and kinetic analysis exhibited four distinct reaction phases in LDL glycation despite of the type of inducer: glucose or glyoxal. LDL glycation was more sensitive to a status of hyperglycemia (such as 400 mg glucose/100 mL) as evidenced by the reaction order of 0.53. Glucose reacted intensively in the Initial Phase (reaction period 0-2h) which was identified to result from a parallel mechanism involving both the direct Schiff's product formation and the auto-oxidative cleavages. In contrast, a physiological level of glyoxal revealed merely a reaction order of only 0.09, implicitly indicating a far less sensitive glycation which can be attributed to a mechanism proceeding simply through a molecular Schiff's reaction. On treatment with Psidium guajava L. aqueous extract (PE) (0.01-0.625 mg/mL), a rather unique and significant inhibitory characteristic on LDL glycation was observed with a dose-dependent manner. We attributed such an effect of PE to its distinct abundance of polyphenolic content (165.61+/-10.39 mggallic acid equivalent (GAE)/g). Conclusively, PE is an excellent anti-LDL glycative agent whose potential therapeutic uses can be extended to the prevention of a variety of cardiovascular and neurodegenerative diseases associated with glycations.  相似文献   

19.
Lipid glycation and protein glycation in diabetes and atherosclerosis   总被引:1,自引:0,他引:1  
Recent instrumental analyses using a hybrid quadrupole/linear ion trap spectrometer in LC-MS/MS have demonstrated that the Maillard reaction progresses not only on proteins but also on amino residues of membrane lipids such as phosphatidylethanolamine (PE), thus forming Amadori-PE (deoxy-d-fructosyl PE) as the principal products. The plasma Amadori-PE level is 0.08 mol% of the total PE in healthy subjects and 0.15–0.29 mol% in diabetic patients. Pyridoxal 5′-phosphate and pyridoxal are the most effective lipid glycation inhibitors, and the PE-pyridoxal 5′-phosphate adduct is detectable in human red blood cells. These findings are beneficial for developing a potential clinical marker for glycemic control as well as potential compounds to prevent the pathogenesis of diabetic complications and atherosclerosis. Glucose and other aldehydes, such as glyoxal, methylglyoxal, and glycolaldehyde, react with the amino residues of proteins to form Amadori products and Heynes rearrangement products. Because several advanced glycation end-product (AGE) inhibitors such as pyridoxamine and benfotiamine inhibit the development of retinopathy and neuropathy in streptozotocin (STZ)-induced diabetic rats, AGEs may play a role in the development of diabetic complications. In the present review, we describe the recent progress and future applications of the Maillard reaction research regarding lipid and protein modifications in diabetes and atherosclerosis.  相似文献   

20.
Packing defects in lipid bilayer play a significant role in the biological activities of cell membranes. Time-resolved fluorescence depolarization has been used to detect and characterize the onset of packing defects in binary mixtures of dilinoleoylphosphatidylethanolamine/1-palmitoyl-2- oleoylphosphatidylcholine (PE/PC). These PE/PC mixtures exhibit mesoscopic packing defect state (D), as well as one-dimensional lambellar liquid crystalline (L alpha) and two-dimensional inverted hexagonal (HII) ordered phases. Based on previous electron microscopic investigations, this D state is characterized by the presence of interlamellar attachments and precursors of HII phase between the lipid layers. Using a rotational diffusion model for rod-shaped fluorophore in a curved matrix, rotational dynamics parameters, second rank order parameter, localized wobbling diffusion, and curvature-dependent rotational diffusion constants of dipyenylhexatriene (DPH)-labeled PC (DPH-PC) in the host PE/PC matrix were recovered from the measured fluorescence depolarization decays of DPH fluorescence. At approximately 60% PE, abrupt increases in these rotational dynamics parameters were observed, reflecting the onset of packing defects in the host PE/PC matrix. We have demonstrated that rotational dynamics parameters are very sensitive in detecting the onset of curvature-associating packing defects in lipid membranes. In addition, the presence of the D state can be characterized by the enhanced wobbling diffusional motion and order packing of lipid molecules, and by the presence of localized curvatures in the lipid layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号