首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Fe(II)-and Co(II)-Fenton systems (FS) inactivated the lipoamide reductase activity but not the diaphorase activity of pig-heart lipoamide dehydrogenase (LADH). The Co(II) system was the more effective as LADH inhibitor. Phosphate ions enhanced the Fe(II)-FS activity. EDTA, DETAPAC, DL-histidine, DL-cysteine, glutathione, DL-dithiothreitol, DL-lipoamide, DL-thioctic acid, bathophenthroline, trypanothione and ATP, but not ADP or AMP, prevented LADH inactivation. Reduced disulfide compounds were more effective protectors than the parent compounds. Mg ions counteracted ATP protective action. Glutathione and DL-dithiothreitol partially restored the lipoamide dehydrogenase activity of the Fe(II)-FS-inhibited LADH. DL-histidine exerted a similar action on the Co(II)-FS-inhibited enzyme. Ethanol, mannitol and benzoate did not prevent LADH inactivation by the assayed Fenton systems and, accordingly, it is postulated that site-specific generated HO'radicals were responsible for LADH inactivation. With the Co(II)-FS, oxygen reactive species other than HO, might contribute to LADH inactivation.  相似文献   

2.
《Free radical research》2013,47(4):311-322
Catecholamines (CAs: epinephrine, norepinephrine, dopamine, L-DOPA, 6-hydroxydopamine) and o-diphenols (DOPAC and catechol) enhanced dihydrolipoamide dehydrogenase (LADH) inactivation by Cu(II) /H2O2 (Cu-Fenton system). The inhibition of LADH activity correlated with Cu(II), H2O2 and CA concentrations. Similar inhibitions were obtained wit! the assayed CAs and o-diphenols. CAs enhanced HO radical production by Cu(II) /H2O2, as demonstrated by benzoate hydroxylation and deoxyribose oxidation; LADH counteracted the pro-oxidant effect of CAs by scavenging hydroxyl radicals. Captopril, dihydrolipo amide, dihydrolipoic acid, DL-dithiothreitol, GSSG, try-panothione and histidine effectively preserved LADH from oxidative damage, whereas N-acetylcysteine, N-(2-mercaptopropionylglycine) and lipoamide were less effective protectors. Catalase (though neither bovine serum albumin nor superoxide dismutase) protected LADH against the Cu(II)/H2O2/CAs systems. Dena tured catalase protected less than the native enzyme, its action possibly depending on Cu-binding. LADH in creased and Captopril inhibited epinephrine oxidation by Cu(II)/H2O2 and Cu(II). The summarized evidence supports the following steps for LADH inactivation: (1) reduction of LADH linked-Cu(II) to Cu(I) by CAs; (2) production of HO* from H2O2 by LADH-linked Cu(I) (Haber-Weiss reaction) and (3) oxidation of aminoacid residues at the: enzyme active site by site-specifically generated HO* radicals. Hydrogen peroxide formation from CAs autoxidation may contribute to LADH inactivation.  相似文献   

3.
Oxygen radical generating systems, namely, Cu(II)/ H2O2, Cu(II)/ascorbate, Cu(II)/NAD(P)H, Cu(II)/ H2O2/catecholamine and Cu(II)/H2O2/SH-compounds irreversibly inhibited yeast glutathione reductase (GR) but Cu(II)/H2O2 enhanced the enzyme diaphorase activity. The time course of GR inactivation by Cu(II)/H2O2 depended on Cu(II) and H2O2 concentrations and was relatively slow, as compared with the effect of Cu(II)/ascorbate. The fluorescence of the enzyme Tyr and Trp residues was modified as a result of oxidative damage. Copper chelators, catalase, bovine serum albumin and HO˙ scavengers prevented GR inactivation by Cu(II)/H2O2 and related systems. Cysteine, N-acetylcysteine, N-(2-dimercaptopropi-onylglycine and penicillamine enhanced the effect of Cu(II)/H2O2 in a concentration- and time-dependent manner. GSH, Captopril, dihydrolipoic acid and dithiotreitol also enhanced the Cu(II)/H2O2 effect, their actions involving the simultaneous operation of pro-oxidant and antioxidant reactions. GSSG and try-panothione disulfide effectively protected GR against Cu(II)/H2O2 inactivation. Thiol compounds prevented GR inactivation by the radical cation ABTS*+. GR inactivation by the systems assayed correlated with their capability for HO* radical generation. The role of amino acid residues at GR active site as targets for oxygen radicals is discussed.  相似文献   

4.
The effect of photoexcited riboflavin (RF) on the viscosity of hyaluronic acid (HA) solutions has been investigated. UV irradiation of RF causes under aerobic conditions fragmentation of HA and a decrease in the viscosity of its solutions. A decrease of HA viscosity occurs in PO4-buffered solutions and is accelerated by high pH, Fe2+ (but much less so by Fe3+), certain metal chelators, and horseradish peroxidase (HRP); it is partially inhibited by catalase and less so by superoxide dismutase (SOD). The reactivity of the system was completely blocked by Tris, ethanol, aspirin, d-manitol, dimethylthiourea (DMTU), dimethylsulfoxide (DMSO), and sodium azide. These results indicate that the most likely chemical species involved in the reaction is the hydroxyl radical. Singlet oxygen (102) generation is suggested by the ability of NaN3 and DMSO to completely inhibit the reactivity of the system. These two agents, however, may also interact with OH radical, as well and suppress the reactivity of the system. H2O2 and seem also to be produced in significant amounts, because catalase and SOD partially block the reactivity of the system. The effect of HRP may be due to hydrogen subtraction from HA and H2O2 reduction to water. Photoexcitation of RF may potentially occur in vitro and in vivo in the organs and tissues that are permeable to light, such as the eye or skin, and damage HA and other cell-matrix components causing inflammation and accelerating aging.  © 1997 Elsevier Science Inc.  相似文献   

5.
This paper describes a novel high-performance liquid chromatographic (HPLC) method for the determination of aromatic compounds with peroxyoxalate chemiluminescence (PO-CL ) detection following on-line UV irradiation. Aromatic compounds were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined via PO-CL detection using a mixture of bis(2,4,6-trichlorophenyl)oxalate (aryloxalate) and 2,4,6,8-tetrathiomorpholinopyrimido[5,4-d]pyrimidine (fluorophore) as a post-column CL reagent. Generation of hydrogen peroxide from aromatic compounds was confirmed using a flow injection analysis (FIA) system incorporating an enzyme column reactor immobilized with catalase. The conditions for UV irradiation were optimized using benzene and monosubstituted benzenes (phenol, benzaldehyde, nitrobenzene and N,N-dimethylaniline) by an HPLC system to evaluate the analytical performance of the proposed system. The detection limits for benzene and monosubstituted benzenes were in the range 2.1-124 pmol/injection at signal:noise (S:N) ratio = 3. Monocyclic and polycyclic hydrocarbons were also employed to investigate their CL properties. The possibility of PO-CL detection for a wide variety of aromatic compounds was shown for the first time.  相似文献   

6.
To evaluate the physiological importance of cytosolic ascorbate peroxidase (APX) in the reactive oxygen species (ROS)-scavenging system, a full-length cDNA clone, named LmAPX, encoding a cytosolic ascorbate peroxidase was isolated from Lycium chinense Mill. using homologous cloning, then the expression of LmAPX under salt stress was investigated. After sequencing and related analysis, the LmAPX cDNA sequence was 965 bp in length and had an open reading frame (ORF) of 750 bp coding for 250 amino acids. Furthermore, the LmAPX sequence was sub-cloned into prokaryotic expression vector pET28a and the recombinant proteins had a high expression level in Escherichia coli. Results from a southern blot analysis indicated that three inserts of this gene existed in the tobacco genome encoding LmAPX. Compared with the control plants (wild-type and empty vector control), the transgenic plants expressing the LmAPX gene exhibited lower amount of hydrogen peroxide (H2O2) and relatively higher values of ascorbate peroxidase activity, proline content, and net photosynthetic rate (Pn) under the same salt stress. These results suggested that overexpression of the LmAPX gene could decrease ROS production caused by salt stress and protect plants from oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号