首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SsrA or tmRNA quality control system relieves ribosome stalling and directs the addition of a degradation tag to the C terminus of the nascent chain. In some instances, SsrA tagging of otherwise full-length proteins occurs when the ribosome pauses at stop codons during normal translation termination. Here, the identities of the C-terminal residues of the nascent chain are shown to play an important role in full-length protein tagging. Specifically, a subset of C-terminal Xaa-Pro sequences caused SsrA tagging of the full-length YbeL protein from Escherichia coli. This tagging increased when a less efficient stop codon was used, increased in cells lacking protein release factor-3, and decreased when protein release factor-1 was overexpressed. Incorporation of the analog azetidine-2-carboxylic acid in place of proline suppressed tagging, whereas incorporation of 3,4-dehydroproline increased SsrA tagging of full-length YbeL. These results suggest that the detailed chemical or conformational properties of the C-terminal residues of the nascent polypeptide can affect the rate of translation termination, thereby influencing ribosome pausing and SsrA tagging at stop codons.  相似文献   

2.
3.
SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity.   总被引:13,自引:0,他引:13       下载免费PDF全文
E D Roche  R T Sauer 《The EMBO journal》1999,18(16):4579-4589
SsrA RNA mediates the addition of a C-terminal peptide tag (AANDENYALAA) to bacterial proteins translated from mRNAs without in-frame stop codons. This process involves both tRNA- and mRNA-like functions of SsrA and targets the tagged proteins for degradation. By designing an SsrA variant that adds a peptide tag (AANDENYALDD) that does not result in rapid degradation, we show that tagging of a model protein synthesized from an mRNA without stop codons can be detected both in vivo and in vitro. We also use this assay to demonstrate that ribosome stalling at clusters of rare arginine codons in mRNA is sufficient to recruit and activate the SsrA peptide tagging system. An essential requirement for tagging at rare AGA codons is a scarcity of the cognate tRNA; supplemental tRNA(AGA) suppresses tagging, and depleting the available pool of tRNA(AGA) enhances tagging and reveals tagging caused by single rare AGA codons. Protein tagging at sites corresponding to rare codons appears to involve SsrA action at an internal mRNA site rather than at the 3' end of a cleaved mRNA.  相似文献   

4.
Induction of translation of the ermC gene product in Bacillus subtilis occurs upon exposure to erythromycin and is a result of ribosome stalling in the ermC leader peptide coding sequence. Another result of ribosome stalling is stabilization of ermC mRNA. The effect of leader RNA secondary structure, methylase translation, and leader peptide translation on induced ermC mRNA stability was examined by constructing various mutations in the ermC leader region. Analysis of deletion mutations showed that ribosome stalling causes induction of ermC mRNA stability in the absence of methylase translation and ermC leader RNA secondary structure. Furthermore, deletions that removed much of the leader peptide coding sequence had no effect on induced ermC mRNA stability. A leader region mutation was constructed such that ribosome stalling occurred in a position upstream of the natural stall site, resulting in induced mRNA stability without induction of translation. This mutation was used to measure the effect of mRNA stabilization on ermC gene expression.  相似文献   

5.
6.
DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation.  相似文献   

7.
Several nascent peptides stall ribosomes during their own translation in both prokaryotes and eukaryotes. Leader peptides that induce stalling can regulate downstream gene expression. Interestingly, stalling peptides show little sequence similarity and interact with the ribosome through distinct mechanisms. To explore the scope of regulation by stalling peptides and to better understand the mechanism of stalling, we identified and characterized new examples from random libraries. We created a genetic selection that ties the life of Escherichia coli cells to stalling at a specific site. This selection relies on the natural bacterial system that rescues arrested ribosomes. We altered transfer-messenger RNA, a key component of this rescue system, to direct the completion of a necessary protein if and only if stalling occurs. We identified three classes of stalling peptides: C-terminal Pro residues, SecM-like peptides, and the novel stalling sequence FXXYXIWPP. Like the leader peptides SecM and TnaC, the FXXYXIWPP peptide induces stalling efficiently by inhibiting peptidyl transfer. The nascent peptide exit tunnel and peptidyltransferase center are implicated in this stalling event, although mutations in the ribosome affect stalling on SecM and FXXYXIWPP differently. We conclude that ribosome stalling can be caused by numerous sequences and is more common than previously believed.  相似文献   

8.
9.
The bacterial ribosome switches from an mRNA lacking an in-frame stop codon and resumes translation on a specialized RNA known as tmRNA, SsrA or 10Sa RNA. We find that the ribosome can reach and use the extreme 3' terminal codon of the defective mRNA prior to switching. The first triplet to be translated in tmRNA (the resume codon) is determined at two levels: distant elements in tmRNA restrict resume codon choice to a narrow window and local upstream elements provide precision. Insights from a randomization-selection experiment secure the alignment of tmRNA sequences from diverse species. The triplet UA(A/G) (normally recognized as a stop codon by release factor-1) is strongly conserved two nucleotides upstream of the resume codon. The central adenosine of this triplet is essential for tmRNA activity. The reading frame of tmRNA is determined differently from all other known reading frames in that the first translated codon is not specified by a particular tRNA anticodon.  相似文献   

10.
11.
Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem-loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.  相似文献   

12.
13.
Neurospora crassa arg-2 mRNA contains an evolutionarily conserved upstream open reading frame (uORF) encoding the Arg attenuator peptide (AAP) that confers negative translational regulation in response to Arg. We examined the regulatory role of the AAP and the RNA encoding it using an N. crassa cell-free translation system. AAPs encoded by uORFs in four fungal mRNAs each conferred negative regulation in response to Arg by causing ribosome stalling at the uORF termination codon. Deleting the AAP non-conserved N terminus did not impair regulation, but deletions extending into the conserved region eliminated it. Introducing many silent mutations into a functional AAP coding region did not eliminate regulation, but a single additional nucleotide change altering the conserved AAP sequence abolished regulation. Therefore, the conserved peptide sequence, but not the mRNA sequence, appeared responsible for regulation. AAP extension at its C terminus resulted in Arg-mediated ribosomal stalling during translational elongation within the extended region and during termination. Comparison of Arg-mediated stalling at a rare or common codon revealed more stalling at the rare codon. These data indicate that the highly evolutionarily conserved peptide core functions within the ribosome to cause stalling; translational events at a potential stall site can influence the extent of stalling there.  相似文献   

14.
Recently, it has been found that ribosome pausing at stop codons caused by certain nascent peptides induces cleavage of mRNA in Escherichia coli cells (1, 2). The question we addressed in the present study is whether mRNA cleavage occurs when translation elongation is prevented. We focused on a specific peptide sequence (AS17), derived from SecM, that is known to cause elongation arrest. When the crp-crr fusion gene encoding CRP-AS17-IIA(Glc) was expressed, cAMP receptor protein (CRP) proteins truncated around the arrest sequence were efficiently produced, and they were tagged by the transfer-messenger RNA (tmRNA) system. Northern blot analysis revealed that both truncated upstream crp and downstream crr mRNAs were generated along with reduced amounts of the full-length crp-crr mRNA. The truncated crp mRNA dramatically decreased in the presence of tmRNA due to rapid degradation. The 3' ends of truncated crp mRNA correspond well to the C termini of the truncated CRP proteins. We conclude that ribosome stalling by the arrest sequence induces mRNA cleavage near the arrest point, resulting in nonstop mRNAs that are recognized by tmRNA. We propose that the mRNA cleavage induced by ribosome stalling acts in concert with the tmRNA system as a way to ensure quality control of protein synthesis and possibly to regulate the expression of certain genes.  相似文献   

15.
16.
Inducible expression of the erm erythromycin resistance genes relies on drug-dependent ribosome stalling. The molecular mechanisms underlying stalling are unknown. We used a cell-free translation system to elucidate the contribution of the nascent peptide, the drug, and the ribosome toward formation of the stalled complex during translation of the ermC leader cistron. Toe-printing mapping, selective amino acid labeling, and mutational analyses revealed the peptidyl transferase center (PTC) as the focal point of the stalling mechanism. In the ribosome exit tunnel, the C-terminal sequence of the nascent peptide, critical for stalling, is in the immediate vicinity of the universally conserved A2062 of 23S rRNA. Mutations of this nucleotide eliminate stalling. Because A2062 is located in the tunnel, it may trigger a conformational change in the PTC, responding to the presence of a specific nascent peptide. The cladinose-containing macrolide antibiotic in the tunnel positions the nascent peptide for interaction with the tunnel sensory elements.  相似文献   

17.
Bacteria possess a unique salvage mechanism for rescuing ribosomes stalled on aberrant mRNAs. A complex of SmpB protein and SsrA RNA orchestrates this salvage process. The specific and direct binding of SmpB facilitates recognition and delivery of SsrA RNA to stalled ribosomes. The SmpB protein is conserved throughout the bacterial kingdom and contains several conserved amino acid sequence motifs. We present evidence to demonstrate that amino acid residues Glu-31, Leu-91, and Lys-124, which are highly conserved and clustered along an exposed surface of the protein, play a crucial role in the SsrA-mediated peptide tagging process. Our analysis suggests that the peptide-tagging defect exhibited by these SmpB variants is due to their inability to facilitate the delivery of SsrA RNA to stalled ribosomes. Moreover, we present evidence to demonstrate that the ribosome association defect of these variants is due to their reduced SsrA binding affinity. Consistent with these findings, we present biochemical evidence to demonstrate that residues Glu-31, Leu-91, and Lys-124 are essential for the SsrA binding activity of SmpB protein. Furthermore, we have investigated the interactions of SmpB.SsrA orthologues from the thermophilic bacterium Thermoanaerobacter tengcongensis. Our investigations demonstrate an analogous role for the equivalent T. tengcongensis residues in SmpB.SsrA interactions, hence further validating our findings for the Escherichia coli SmpB.SsrA system. These results demonstrate the functional significance of this cluster of conserved residues in SmpB binding to SsrA RNA, suggesting they might represent a core contact surface for recognition of SsrA RNA.  相似文献   

18.
DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.  相似文献   

19.
Genes encoding chloramphenicol acetyltransferase in gram-positive bacteria are induced by chloramphenicol. Induction reflects an ability of the drug to stall a ribosome at a specific site in cat leader mRNA. Ribosome stalling at this site alters downstream RNA secondary structure, thereby unmasking the ribosome-binding site for the cat coding sequence. Here, we show that ribosome stalling in the cat-86 leader is a function of leader codons 2 through 5 and that stalling requires these codons to be presented in the correct reading frame. Codons 2 through 5 specify Val-Lys-Thr-Asp. Insertion of a second copy of the stall sequence 5' to the authentic stall sequence diminished cat-86 induction fivefold. Thus, the stall sequence can function in ribosome stalling when the stall sequence is displaced from the downstream RNA secondary structure. We suggest that the stall sequence may function in cat induction at two levels. First, the tetrapeptide specified by the stall sequence likely plays an active role in the induction strategy, on the basis of previously reported genetic suppression studies (W. W. Mulbry, N. P. Ambulos, Jr., and P.S. Lovett, J. Bacteriol. 171:5322-5324, 1989). Second, we show that embedded within the stall sequence of cat leaders is a region which is complementary to a sequence internal in 16S rRNA of Bacillus subtilis. This complementarity may guide a ribosome to the proper position on leader mRNA or potentiate the stalling event, or both. The region of complementarity is absent from Escherichia coli 16S rRNA, and cat genes induce poorly, or not at all, in E. coli.  相似文献   

20.
The production and removal of regulatory RNAs must be controlled to ensure proper physiological responses. SsrA RNA (tmRNA), a regulatory RNA conserved in all bacteria, is cell cycle regulated and is important for control of cell cycle progression in Caulobacter crescentus. We report that RNase R, a highly conserved 3' to 5' exoribonuclease, is required for the selective degradation of SsrA RNA in stalked cells. Purified RNase R degrades SsrA RNA in vitro, and is kinetically competent to account for all SsrA RNA turnover. SmpB, a tmRNA-binding protein, protects SsrA RNA from RNase R degradation in vitro, and the levels of SmpB protein during the cell cycle correlate with SsrA RNA stability. These results suggest that SmpB binding controls the timing of SsrA RNA degradation by RNase R. We propose a model for the regulated degradation of SsrA RNA in which RNase R degrades SsrA RNA from a non-tRNA-like 3' end, and SmpB specifically protects SsrA RNA from RNase R. This model explains the regulation of SsrA RNA in other bacteria, and suggests that a highly conserved regulatory mechanism controls SsrA activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号