首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level of mRNA for uncoupling protein was measured in brown adipose tissue of young (8-10 weeks) and old (11 months) lean and ob/ob mice using a cDNA clone constructed previously. The level of poly(A)+ RNA was also measured using an oligo(dT)18 probe. Mice were kept at 28 degrees C or exposed to 14 degrees C for 12 h. The level of mRNA for uncoupling protein was normal in brown adipose tissue of younger obese mice but reduced in brown adipose tissue of old obese mice. The cold-induced absolute increase in uncoupling protein mRNA was smaller in obese mice, regardless of age. It is concluded that the known attenuation of the acute thermogenic response of brown adipose tissue of the ob/ob mouse to cold is accompanied by a similar attenuation of the initiation of the trophic response. It is likely, however, that these defects are secondary to the chronic reduction in sympathetic nervous system activity in brown adipose tissue of the ob/ob mouse, which results in a functional atrophy of the tissue.  相似文献   

2.
3.
The suggestion that defective thermoregulatory thermogenesis in the genetically obese (ob/ob) mouse is due to a low thermic response to noradrenaline has been investigated using both noradrenaline and the longer-acting sympathomimetic compounds, ephedrine and BRL 26830A. Below thermoneutrality (23.5°C) the metabolic rate of obese mice was lower than that of their lean littermates, whereas at a thermoneutral temperature (31°C) the metabolic rate of the obese nice was as high as that of lean mice. This confirms the view that the ob/ob mouse has defective thermoregulatory thermogenesis. However, in C57BL/6 mice, this defect is not due to a failure to respond to noradrenaline, because at 31°C the maximum thermic effects of noradrenaline, ephedrine and BRL 26830A were as high in obese as in lean mice and at 23.5°C they were higher in obese than in lean mice. Furthermore, the response of brown adipose tissue to β-adrenoceptor stimulation appears normal since noradrenaline caused a normal rise in brown adipose tissue temperature, and treatment with noradrenaline or BRL 26830A invivo caused a normal increase in GDP binding by brown adipose tissue mtiochondria. At 31°C propranolol depressed metabolic rate equally in lean and obese C57BL/6 mice, whereas at 23.5°C it depressed metabolic rate more in lean than obese mice. In contrast to C57BL/6 mice, Aston ob/ob mice showed a reduced thermic response to noradrenaline. These results suggest that defective thermoregulatory thermogenesis in the ob/ob mouse is primarily due to a reduced ability to raise sympathetic tone, but in some strains an additional failure in the thermic response to noradrenaline may develop.  相似文献   

4.
The concentration of the 'uncoupling protein' in brown adipose tissue mitochondria has been measured in lean and obese (ob/ob) mice and Zucker (fa/fa) rats at different ages using a specific radioimmunoassay. During the suckling period the concentration of the protein was similar in normal and mutant animals of both types, despite the decrease in mitochondrial GDP binding observed in the obese. The concentration of uncoupling protein was, however, decreased in adult ob/ob mice and adult Zucker rats compared with their respective lean siblings, in parallel with the decrease in GDP binding. It is concluded that there is a 'masked', or inactive, form of uncoupling protein in young ob/ob mice and fa/fa rats.  相似文献   

5.
The anti-obesity and anti-diabetic actions of BRL 26830A, beta 3-adrenoceptor agonist, (2 mg/kg administered intramuscularly daily for 2 weeks) were evaluated in obese diabetic Yellow KK mice and C57B1 control mice. The following parameters were compared in the treated vs. control animals: brown adipose tissue (BAT) thermogenesis, resting metabolic rate (RMR), insulin receptors in adipocytes, and blood glucose and serum insulin levels during a glucose overloading test. BRL 26830A significantly increased BAT thermogenesis and RMR but it decreased the amount of white adipose tissue without affecting food intake. Those actions contributed to the mitigation of obesity in Yellow KK mice. BRL 26830A also increased the concentration of insulin receptors and decreased the levels of serum insulin and blood glucose during the glucose overloading test in Yellow KK mice. In the glucose overloading test performed one hour after BRL 26830A injection, insulin secretion was significantly increased and the blood glucose level was markedly decreased in both groups. These observations suggest that BRL 26830A possesses anti-obesity and anti-diabetic actions and consequently may be useful for treating obesity as well as non-insulin-dependent diabetes mellitus with obesity.  相似文献   

6.
7.
Young lean (Fa/?) and obese (fa/fa) rats were treated with the thermogenic beta-adrenoceptor agonist, BRL 26830, for 3 weeks. In lean rats this treatment had no effect on body weight but there was a marked increase in the insulin sensitivity of soleus muscle strips with respect to glycolytic rate. Treatment of obese rats with BRL 26830 produced a small but not significant decrease in body weight but the sensitivity of both glycolysis and glycogen synthesis to insulin was increased so that muscles of treated obese rats showed similar insulin sensitivity to untreated lean rats. It is suggested that such changes are unlikely to be merely a secondary consequence of an anti-obesity action.  相似文献   

8.
The nature of the substrate that fuels the thermogenic response to the novel beta-adrenoceptor agonist BRL 26830A has been investigated. Respiratory quotient measurements indicated that the increase in metabolic rate produced by BRL 26830A in rats was fuelled wholly by lipid. BRL 26830A also produced a marked reduction in the lipid content of total dissectable brown adipose tissue. The energy content of this lipid lost during the 4-h period after dosing was equivalent to approximately 50% of the thermogenic effect of the compound over the same period, suggesting that lipid stored in brown adipose tissue is a major initial fuel for BRL 26830A induced thermogenesis. However, marked depletion of brown adipose tissue lipid prior to administration of BRL 26830A had no effect on the subsequent thermogenic response to the compound. Oral administration of glucose altered the pattern of fuel utilization for resting metabolism, but thermogenesis was still fuelled mainly by lipid. Administration of methyl palmoxirate, which inhibits oxidation of long-chain fatty acids, completely prevented the thermic effect of BRL 26830A, suggesting that lipid is a necessary fuel for this process. These results do not support suggestions that carbohydrate is quantitatively important as a fuel for nonshivering thermogenesis.  相似文献   

9.
The maximal activities of the key glycolytic enzymes hexokinase and 6-phosphofructokinase, were reduced in brown adipose tissue in db/db mice compared to their lean littermates. Treatment of db/db mice with the thermogenic beta-adrenoceptor agonist, BRL 26830, restored normoglycaemia. The only significant increase in activity of hexokinase and 6-phosphofructokinase in the BRL 26830-treated db/db mice occurred in brown adipose tissue where the total tissue activity increased 10- and 11-fold respectively. These changes together with increased 2-deoxyglucose uptake in vivo suggest that brown adipose tissue can play a quantitatively important role in the removal of glucose from the blood.  相似文献   

10.
Regulation of thermogenic activity and uncoupling protein1 (UCP1) expression in brown adipose tissue (BAT) were studied in euthermic Daurian ground squirrel after acute and chronic cold exposure at 4 degrees C. The UCP1 concentration was indirectly determined by titration with its specific ligand [3H]-labeled GTP, and Ucp1 mRNA was detected by using a [32P]-labeled antisense oligonucleotide probe. Both acute and chronic cold exposure stimulated up-regulation of Ucp1 mRNA. Although UCP1 concentration is not significantly increased after 24 h of cold exposure, it is markedly elevated by 75% in squirrels after 4-week cold adaptation compared with controls raised at 22 degrees C. Changes in T4 5'-deiodinase activity were closely associated with variations of Ucp1 mRNA level. Ucp1 gene expression is significantly affected by cold exposure in BAT from euthermic Daurian ground squirrels. In addition, the activation of T4 5'-deiodinase may be an important regulatory factor in cold-induced Ucp1 expression.  相似文献   

11.
We have identified cDNAs clones for several cold-inducible mRNAs from the brown adipose tissue of mice. pCIN-1, a plasmid with a 900-base pair insert, encoded the mitochondrial uncoupling protein (UCP) as determined by the ability of the cDNA insert to select, by hybridization, an mRNA that could be translated into a 32,000-Da protein immunoprecipitable with anti-UCP antibodies. Nine tissues were analyzed; however, UCP cDNA hybridized to an mRNA species of 1.6 and 2.0 kilobase pairs only in brown adipose tissue. A maximum induction of 10-fold occurred within 6 h of exposure to cold (5 degrees C). A BamHI restriction fragment polymorphism detected by Southern blot analysis of genomic DNA in recombinant inbred mouse strains allowed us to map the UCP gene to Chromosome 8. The analysis of the UCP gene expression in diabetic (db) and obese (ob) mice maintained at 27 degrees C for 3 days followed by cold exposure for 4 h at 5 degrees C indicated that UCP mRNA levels in mutant mice were unaffected at 27 degrees C and only slightly reduced at 5 degrees C. Accordingly, the inability of diabetic and obese mice to thermoregulate is not associated with a lack of UCP mRNA induction.  相似文献   

12.
Uncoupling protein 3 (Ucp3) is located within the mitochondrial inner membrane of brown adipose tissue and skeletal muscle. It is thought to be implicated in lipid metabolism and defense against reactive oxygen species. We previously reported on a mutation in our breeding colony of Djungarian hamsters (Phodopus sungorus) that leads to brown adipose tissue specific lack of Ucp3 expression. In this study we compared wildtype with mutant hamsters on a broad genetic background. Hamsters lacking Ucp3 in brown adipose tissue displayed a reduced cold tolerance due to impaired nonshivering thermogenesis. This phenotype is associated with a global decrease in expression of metabolic genes but not of uncoupling protein 1. These data implicate that Ucp3 is necessary to sustain high metabolic rates in brown adipose tissue.  相似文献   

13.
S W Mercer  P Trayhurn 《FEBS letters》1986,195(1-2):12-16
Genetically obese (ob/ob) mice develop a marked insulin resistance in brown adipose tissue soon after weaning, and this is paralleled by a fall in the acute activation of the mitochondrial proton conductance pathway in the tissue on cold exposure. Treatment of ob/ob mice with ciglitazone, a new oral hypoglycaemic, led to a restoration of insulin sensitivity in brown adipose tissue. The amelioration of insulin resistance was accompanied by a normalization of the acute, cold-induced increase in mitochondrial GDP binding. These results support the hypothesis that the development of insulin resistance in brown adipose tissue is an important factor in the impaired thermogenic responsiveness of obese mice.  相似文献   

14.
Chronic dietary administration of the oral hypoglycaemic ciglitazone (3 g/day for 14–28 days) to lean, non-diabetic CD1 mice resulted in increased brown adipose tissue mitochondrial GDP binding and a marked increase in the thermic effect of the beta-adrenoceptor agonist BRL 26830A. However, ciglitazone was not itself thermogenic after an acute dose, nor did it raise resting metabolic rate during chronic dietary dosing.  相似文献   

15.
16.
Mild cold acclimation (22°C, 3 weeks) of hairless mice was shown to increase 5-fold the brown adipose tissue uncoupling protein content in immunodeficient BALB/c nu/nu mice, but by only 2.3-fold in immunocompetent BFU mice. The difference in activation of brown adipose tissue thermogenic capacity was due to a 2-fold increase in the content of brown adipose tissue in nu/nu mice only, which was paralleled by an increase in brown adipose tissue protein but not DNA content. Likewise, only in nu/nu mice the cold acclimation increased the reaction of natural killer cells in blood and peritoneal exudate with a shift from spleen to lymph nodes and increased the phagocytic index. The results indicate that the immune system may influence the defence against cold at the level of brown adipose tissue thermogenesis.Abbreviations AU arbitrary unit(s) - bw body weight - HEMA 2-hydromethyl-metacrylate copolymer - BAT brown adipose tissue - UCP uncoupling protein - ATPase mitochondrial FoF1-ATPsynthase - IL-1 interleukin 1 - TNF tumour necrosis factor - NK cells natural killer cells - T a ambient temperature  相似文献   

17.
18.
Regulation of thermogenic activity and uncoupling protein1 (UCP1) expression in brown adipose tissue (BAT) were studied in euthermic Daurian ground squirrel after acute and chronic cold exposure at 4°C. The UCP1 concentration was indirectly determined by titration with its specific ligand [3H]-labeled GTP, and Ucp1 mRNA was detected by using a [32P]-labeled antisense oligonucleotide probe. Both acute and chronic cold exposure stimulated up-regulation of Ucp1 mRNA. Although UCP1 concentration is not significantly increased after 24 h of cold exposure, it is markedly elevated by 75% in squirrels after 4-week cold adaptation compared with controls raised at 22°C. Changes in T4 5′-deiodinase activity were closely associated with variations of Ucp1 mRNA level. Ucp1 gene expression is significantly affected by cold exposure in BAT from euthermic Daurian ground squirrels. In addition, the activation of T4 5′-deiodinase may be an important regulatory factor in cold-induced Ucp1 expression.  相似文献   

19.
The amount of mRNA coding for the brown fat specific uncoupling protein thermogenin was followed in the brown adipose tissue of adult mice. As expected, cold exposure or norepinephrine injection caused an increase in the amount of thermogenin mRNA. However, contrary to expectation, the half-life of thermogenin mRNA was dramatically reduced, from about 18 h to about 3 h, when the mice were cold exposed. This destabilization of thermogenin mRNA was not related to the activity of protein synthesis. It was concluded that in brown adipose tissue an unusual mechanism operates which leads to a destabilization of thermogenin mRNA under the same physiological conditions which increase thermogenin gene expression.  相似文献   

20.
BRL 26830 is a thermogenic-adrenoceptor agonist which stimulates lipolysis and fatty acid oxidationin vivo. It also stimulates insulin secretion, and hence promotes glucose utilisationin vivo. The effect of this agent on white and brown adipose tissue of the rat was investigated. BRL 26830 increased the rate of fatty acid synthesisin vivo in white adipose tissue by 135% but reduced the rate of fatty acid synthesisin vivo in brown adipose tissue by 78%. The increase was abolished in white adipose tissue of streptozotocin-diabetic rats, indicating that the effect involved a rise in circulating insulin levels. The reduction in fatty acid synthesis in brown adipose tissues was associated with a reduction in the activity of acetyl-CoA carboxylase in the tissue consistent with a direct-adrenoceptor-mediated effect. BRL 26830 also increased the proportion of pyruvate dehydrogenase in its active formin vivo in brown adipose tissue and this increase was abolished in streptozotocin-diabetic rats. These findings illustrate different sensitivities of white and brown adipose tissues to combined-adrenergic and insulin stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号