首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asthma is one of the most common chronic inflammatory disorder of the airways of the lungs, affecting more than 300 million people all over the world. Nitric oxide (NO) is endogenously produced in mammalian airways by nitric oxide synthase (NOS) and is known to regulate many aspects of human asthma, including the modulation of airway and vascular smooth muscle tone and the inflammation. Asthmatic patients show an increased expression of inducible nitric oxide synthase (iNOS) in airway epithelial cells and an increased level of NO in exhaled air. Using various NO inhibitors (non-specific or iNOS-specific) and gene knock-out experiments, controversial results have been obtained regarding iNOS's beneficial and deleterious effects in the disease. In the present review, we have attempted to summarize the results of these experiments and also the genetic studies being undertaken to understand the role of iNOS in asthma. It is argued that extensive biochemical, clinical and genetic studies will be required to assess the precise role of NO in the asthma. This may help in designing selective and more potent iNOS inhibitors and NO donors for developing novel therapeutics for the asthma patients.  相似文献   

2.
Pulmonary inflammation in asthma is orchestrated by the activity of NF-kappaB. NO and NO synthase (NOS) activity are important modulators of inflammation. The availability of the NOS substrate, l-arginine, is one of the mechanisms that controls the activity of NOS. Arginase also uses l-arginine as its substrate, and arginase-1 expression is highly induced in a murine model of asthma. Because we have previously described that arginase affects NOx content and interferes with the activation of NF-kappaB in lung epithelial cells, the goal of this study was to investigate the impact of arginase inhibition on the bioavailability of NO and the implications for NF-kappaB activation and inflammation in a mouse model of allergic airway disease. Administration of the arginase inhibitor BEC (S-(2-boronoethyl)-l-cysteine) decreased arginase activity and caused alterations in NO homeostasis, which were reflected by increases in S-nitrosylated and nitrated proteins in the lungs from inflamed mice. In contrast to our expectations, BEC enhanced perivascular and peribronchiolar lung inflammation, mucus metaplasia, NF-kappaB DNA binding, and mRNA expression of the NF-kappaB-driven chemokine genes CCL20 and KC, and lead to further increases in airways hyperresponsiveness. These results suggest that inhibition of arginase activity enhanced a variety of parameters relevant to allergic airways disease, possibly by altering NO homeostasis.  相似文献   

3.
4.
Increased arginase I activity is associated with allergic disorders such as asthma. How arginase I contributes to and is regulated by allergic inflammatory processes remains unknown. CD4+ Th2 lymphocytes (Th2 cells) and IL-13 are two crucial immune regulators that use STAT6-dependent pathways to induce allergic airways inflammation and enhanced airways responsiveness to spasmogens (airways hyperresponsiveness (AHR)). This pathway is also used to activate arginase I in isolated cells and in hepatic infection with helminths. In the present study, we show that arginase I expression is also regulated in the lung in a STAT6-dependent manner by Th2-induced allergic inflammation or by IL-13 alone. IL-13-induced expression of arginase I correlated directly with increased synthesis of urea and with reduced synthesis of NO. Expression of arginase I, but not eosinophilia or mucus hypersecretion, temporally correlated with the development, persistence, and resolution of IL-13-induced AHR. Pharmacological supplementation with l-arginine or with NO donors amplified or attenuated IL-13-induced AHR, respectively. Moreover, inducing loss of function of arginase I specifically in the lung by using RNA interference abrogated the development of IL-13-induced AHR. These data suggest an important role for metabolism of l-arginine by arginase I in the modulation of IL-13-induced AHR and identify a potential pathway distal to cytokine receptor interactions for the control of IL-13-mediated bronchoconstriction in asthma.  相似文献   

5.

Background

Despite its reported pro-inflammatory activity, cyclooxygenase (COX)-2 has been proposed to play a protective role in asthma. Accordingly, COX-2 might be down-regulated in the airway cells of asthmatics. This, together with results of experiments to assess the impact of COX-2 blockade in ovalbumin (OVA)-sensitized mice in vivo, led us to propose a novel experimental approach using house dust mite (HDM)-sensitized mice in which we mimicked altered regulation of COX-2.

Methods

Allergic inflammation was induced in BALBc mice by intranasal exposure to HDM for 10 consecutive days. This model reproduces spontaneous exposure to aeroallergens by asthmatic patients. In order to impair, but not fully block, COX-2 production in the airways, some of the animals received an intranasal antisense oligonucleotide. Lung COX-2 expression and activity were measured along with bronchovascular inflammation, airway reactivity, and prostaglandin production.

Results

We observed impaired COX-2 mRNA and protein expression in the lung tissue of selective oligonucleotide-treated sensitized mice. This was accompanied by diminished production of mPGE synthase and PGE2 in the airways. In sensitized mice, the oligonucleotide induced increased airway hyperreactivity (AHR) to methacholine, but a substantially reduced bronchovascular inflammation. Finally, mRNA levels of hPGD synthase remained unchanged.

Conclusion

Intranasal antisense therapy against COX-2 in vivo mimicked the reported impairment of COX-2 regulation in the airway cells of asthmatic patients. This strategy revealed an unexpected novel dual effect: inflammation was improved but AHR worsened. This approach will provide insights into the differential regulation of inflammation and lung function in asthma, and will help identify pharmacological targets within the COX-2/PG system.  相似文献   

6.
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.  相似文献   

7.
In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase. In these studies, we sought to determine the effects of NO2 exposure on mice with ongoing allergic airway disease pathology. Mice were sensitized and challenged with the antigen ovalbumin (OVA) to generate airway inflammation and subsequently exposed to 5 or 25 ppm NO2 for 3 days or 5 days followed by a 20-day recovery period. Whereas 5 ppm NO2 elicited no pathological changes, inhalation of 25 ppm NO2 alone induced acute lung injury, which peaked after 3 days and was characterized by increases in protein, LDH, and neutrophils recovered by BAL, as well as lesions within terminal bronchioles. Importantly, 25 ppm NO2 was also sufficient to cause AHR in mice, a cardinal feature of asthma. The inflammatory changes were ameliorated after 5 days of inhalation and completely resolved after 20 days of recovery after the 5-day inhalation. In contrast, in mice immunized and challenged with OVA, inhalation of 25 ppm NO2 caused a marked augmentation of eosinophilic inflammation and terminal bronchiolar lesions, which extended significantly into the alveoli. Moreover, 20 days postcessation of the 5-day 25 ppm NO2 inhalation regimen, eosinophilic and neutrophilic inflammation, pulmonary lesions, and AHR were still present in mice immunized and challenged with OVA. Collectively, these observations suggest an important role for NO2 in airway pathologies associated with asthma, both in modulation of degree and duration of inflammatory response, as well as in induction of AHR.  相似文献   

8.
Increased levels of NO in exhaled air in association with increased NO synthetase (NOS)2 expression in bronchial epithelial are hallmark features of asthma. It has been suggested that NO contributes to asthma pathogenesis by selective down-regulation of TH1 responses. We demonstrate, however, that NO can reversibly limit in vitro expansion of both human TH1 and TH2 CD4+ T cells. Mechanistically, NO induces cGMP-mediated reversible STAT5 dephosphorylation and therefore interferes with the IL-2R activation cascade. Human bronchial epithelial cells (HBEC) up-regulate NOS2 after stimulation with IFN-gamma secreted by TH1 CD4+ T cells and release NO, which inhibits both TH1 and TH2 cell proliferation. This reversible T cell growth arrest depends on NO because T cell proliferation is completely restored after in vitro blocking of NOS2 on HBEC. HBEC thus drive the effector end of a TH1-controlled feedback loop, which protects airway mucosal tissues at the potential lesional site in asthma from overwhelming CD4+ TH2 (and potentially TH1) responses following allergen exposure. Variations in the efficiency of this feedback loop provides a plausible mechanism to explain why only a subset of atopics sensitized to ubiquitous aeroallergens progress to expression of clinically relevant levels of airways inflammation.  相似文献   

9.
Antibody-antigen interactions in the airway initiate inflammation in acute asthma exacerbations. This inflammatory response is characterized by the recruitment of granulocytes into the airways. In murine models of asthma, granulocyte recruitment into the lung contributes to the development of airway hyperresponsiveness (AHR), mucus production, and airway remodeling. Leukotriene B4 is a mediator released following antigen challenge that has chemotactic activity for granulocytes, mediated through its receptor, BLT1. We investigated the role of BLT1 in granulocyte recruitment following antigen challenge. Wild-type mice and BLT1-/- mice were sensitized and challenged with ovalbumin (OVA) to induce acute allergic airway inflammation. In addition, to explore the relevance to antibody-antigen interactions, we injected OVA bound to anti-OVA IgG1 or anti-OVA IgE intratracheally into na?ve wild-type and BLT1-/- mice. Cell composition of the lungs, cytokine levels, histology, and AHR were determined. After sensitization and challenge with ovalbumin, there was significantly reduced neutrophil and eosinophil recruitment into the airways of BLT1-/- mice compared with wild-type animals after one or two daily antigen challenges, but this difference was not seen after three or four daily antigen challenges. Mucus production and AHR were not affected. Intratracheal injection of OVA bound to IgG1 or IgE induced neutrophil recruitment into the airways in wild-type mice but not in the BLT1-/- mice. We conclude that BLT1 mediates early recruitment of granulocytes into the airway in response to antigen-antibody interactions in a murine model of acute asthma.  相似文献   

10.
11.
Asthma is characterized by chronic airways inflammation, airway wall remodeling, and airway hyperresponsiveness (AHR). An increase in airway smooth muscle has been proposed to explain a major part of AHR in asthma. We have used unbiased stereological methods to determine whether airway smooth muscle hyperplasia and AHR occurred in sensitized, antigen-challenged Brown Norway (BN) rats. Ovalbumin (OA)-sensitized BN rats chronically exposed to OA aerosol displayed airway inflammation and a modest level of AHR to intravenously administered ACh 24 h after the last antigen challenge. However, these animals did not show an increase in smooth muscle cell (SMC) number in the left main bronchus, suggesting that short-lived inflammatory mechanisms caused the acute AHR. In contrast, 7 days after the last aerosol challenge, there was a modest increase in SMC number, but no AHR to ACh. Addition of FCS to the chronic OA challenge protocol had no effect on the degree of inflammation but resulted in a marked increase in both SMC number and a persistent (7-day) AHR. These results raise the possibility that increases in airway SMC number rather than, or in addition to, chronic inflammation contribute to the persistent AHR detected in this model.  相似文献   

12.
We have studied murine models of asthma using FcepsilonRIalpha-chain-deficient (FcepsilonRIalpha(-/-)) mice to investigate the role of IgE-dependent mast cell activation in these models. When mice were either 1) immunized once with OVA in alum i.p. and then challenged with OVA intranasally, or 2) repeatedly immunized with OVA in the absence of adjuvant and subsequently challenged with nebulized OVA, FcepsilonRalpha(-/-) mice had significantly fewer eosinophils and lower IL-4 levels in their bronchoalveolar lavage fluid compared with wild-type mice. When mice were given anti-IL-5 antibody before OVA challenge in protocol 1, eosinophilic infiltration into the airways was significantly suppressed in both genotypes, but only FcepsilonRIalpha(-/-) mice showed significantly reduced airway hyperresponsiveness (AHR). In addition, when mice immunized and challenged with OVA also received a late OVA provocation at a higher concentration and were then exposed to methacholine, only wild-type mice developed a substantial increase in AHR. Since FcepsilonRI is expressed mainly on mast cells in mouse airways, we conclude that IgE-dependent activation of this cell type plays an important role in the development of allergic airway inflammation and AHR in mice. The models used may be of value for testing inhibitors of IgE or mast cells for development of therapeutic agents for human asthma.  相似文献   

13.
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

14.
Role of exhaled nitric oxide in asthma   总被引:4,自引:0,他引:4  
Nitric oxide (NO), an evanescent atmospheric gas, has recently been discovered to be an important biological mediator in animals and humans. Nitric oxide plays a key role within the lung in the modulation of a wide variety of functions including pulmonary vascular tone, nonadrenergic non-cholinergic (NANC) transmission and modification of the inflammatory response. Asthma is characterized by chronic airway inflammation and increased synthesis of NO and other highly reactive and toxic substances (reactive oxygen species). Pro- inflammatory cytokines such as TNFalpha and IL-1beta are secreted in asthma and result in inflammatory cell recruitment, but also induce calcium- and calmodulin-independent nitric oxide synthases (iNOS) and perpetuate the inflammatory response within the airways. Nitric oxide is released by several pulmonary cells including epithelial cells, eosinophils and macrophages, and NO has been shown to be increased in conditions associated with airway inflammation, such as asthma and viral infections. Nitric oxide can be measured in the expired air of several species, and exhaled NO can now be rapidly and easily measured by the use of chemiluminescence analysers in humans. Exhaled NO is increased in steroid-naive asthmatic subjects and during an asthma exacerbation, although it returns to baseline levels with appropriate anti-inflammatory treatment, and such measurements have been proposed as a simple non-invasive method of measuring airway inflammation in asthma. Here the chemical and biological properties of NO are briefly discussed, followed by a summary of the methodological considerations relevant to the measurement of exhaled NO and its role in lung diseases including asthma. The origin of exhaled NO is considered, and brief mention made of other potential markers of airway inflammation or oxidant stress in exhaled breath.  相似文献   

15.
Activation of the alternative pathway of complement plays a critical role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in mice. Endogenous factor H, a potent inhibitor of the alternative pathway, is increased in the airways of sensitized and challenged mice, but its role in regulating inflammation or AHR has been unknown. We found that blocking the tissue-binding function of factor H with a competitive antagonist increased complement activation and tissue inflammation after allergen challenge of sensitized mice. Conversely, administration of a fusion protein that contains the iC3b/C3d binding region of complement receptor 2 linked to the inhibitory region of factor H, a molecule directly targeting complement-activating surfaces, protected mice in both primary and secondary challenge models of AHR and lung inflammation. Thus, although endogenous factor H does play a role in limiting the development of AHR, strategies to deliver the complement-regulatory region of factor H specifically to the site of inflammation provide greater protection than that afforded by endogenous regulators. Such an agent may be an effective therapy for the treatment of asthma.  相似文献   

16.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

17.
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.  相似文献   

18.
It is well-established that bacterial and viral infections have an exacerbating effect on allergic asthma, particularly aggravating respiratory symptoms, such as airway hyperresponsiveness (AHR). The mechanism by which these infections alter AHR is unclear, but some studies suggest that Toll-like receptors (TLRs) play a role. In this study, we investigated the impact of TLR3 and TLR4 ligands on AHR and airway inflammation in a model of pre-established allergic inflammation. Female BALB/c mice were sensitised and challenged intranasally (i.n.) with either PBS or ovalbumin (OVA) and subsequently i.n. challenged with poly (I:C) (TLR3) or LPS (TLR4) for four consecutive days. The response to methacholine was measured in vivo; cellular and inflammatory mediators were measured in blood, lung tissue and broncheoalveolar lavage fluid (BALF). OVA challenge resulted in an increase in AHR to methacholine, as well as increased airway eosinophilia and TH2 cytokine production. Subsequent challenge with TLR agonists resulted in a significant increase in AHR, but decreased TLR-specific cellular inflammation and production of immune mediators. Particularly evident was a decline in LPS-induced neutrophilia and neutrophil-associated cytokines following LPS and poly (I:C) treatment. The present data indicates that TLRs may play a pivotal role in AHR in response to microbial infection in allergic lung inflammation. These data also demonstrate that aggravated AHR occurs in the absence of an exacerbation in airway inflammation and that allergic inflammation impedes a subsequent inflammatory response to TLRs. These results may parallel clinical signs of microbial asthma exacerbation, including an extended duration of illness and increased respiratory symptoms.  相似文献   

19.
20.
Airway hyperresponsiveness to a variety of specific and nonspecific stimuli is a cardinal feature of asthma, which affects nearly 10% of the population in industrialized countries. Eosinophilic pulmonary inflammation, eosinophil-derived products, as well as Th2 cytokines IL-13, IL-4, and IL-5, have been associated with the development of airway hyperreactivity (AHR), but the specific immunological basis underlying the development of AHR remains controversial. Herein we show that mice with targeted deletion of IL-13 failed to develop allergen-induced AHR, despite the presence of vigorous Th2-biased, eosinophilic pulmonary inflammation. However, AHR was restored in IL-13(-/-) mice by the administration of recombinant IL-13. Moreover, adoptive transfer of OVA-specific Th2 cells generated from TCR-transgenic IL-13(-/-) mice failed to induce AHR in recipient SCID mice, although such IL-13(-/-) Th2 cells produced high levels of IL-4 and IL-5 and induced significant airway inflammation. These studies definitively demonstrate that IL-13 is necessary and sufficient for the induction of AHR and that eosinophilic airway inflammation in the absence of IL-13 is inadequate for the induction of AHR. Therefore, treatment of human asthma with antagonists of IL-13 may be very effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号