首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin HY  Luo LF  Zhang LR 《Gene》2008,424(1-2):115-120
A crucial part in the gene structure prediction is to identify the accurate splice sites, not only constitutive but also alternative ones. Here, we use the maximum information principle (MIP) to analyze the conservative segments around splice sites. According to the MIP, a reaction free energy (RFE) expression is deduced, which can be employed to estimate the free energy change during splicing reaction involving a donor or acceptor site. The expression contains not only the background probability factors, but also all kinds of dependencies among both adjacent and non-adjacent bases. We apply the RFE expression to recognize splice sites and their flanking competitors in human genes, the results show high sensitivity and specificity, so the RFE expression accords well with the splicing reaction process. Moreover, the RFE expression is better than previous methods for predicting competitors of splice sites, and it outperforms the reaction free energy subtraction (RFES), that implies RFE competition between a given splice site and its flanking competitor may not be an only primary factor for alternative splice site selection. The work is helpful to not only the understanding of splicing reaction from its relation to MIP, but also the research on computational recognition of splicing sites and alternative splice events.  相似文献   

2.
ASAP: the Alternative Splicing Annotation Project   总被引:2,自引:0,他引:2  
Recently, genomics analyses have demonstrated that alternative splicing is widespread in mammalian genomes (30-60% of genes reported to have multiple isoforms), and may be one of their most important mechanisms of functional regulation. However, by comparison with other genomics data such as genome annotation, SNPs, or gene expression, there exists relatively little database infrastructure for the study of alternative splicing. We have constructed an online database ASAP (the Alternative Splicing Annotation Project) for biologists to access and mine the enormous wealth of alternative splicing information coming from genomics and proteomics. ASAP is based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. Moreover, it can help biologists design probe sequences for distinguishing specific mRNA isoforms. ASAP is intended to be a community resource for collaborative annotation of alternative splice forms, their regulation, and biological functions. The URL for ASAP is http://www.bioinformatics.ucla.edu/ASAP.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Liu Q  Chen C  Shen E  Zhao F  Sun Z  Wu J 《Genomics》2012,99(3):178-182
Alternative splicing is a crucial mechanism by which diverse gene products can be generated from a limited number of genes, and is thought to be involved in complex orchestration of eukaryotic gene expression. Next-generation sequencing technologies, with reduced time and cost, provide unprecedented opportunities for deep interrogation of alternative splicing at the genome-wide scale. In this study, an integrated software SplicingViewer has been developed for unambiguous detection, annotation and visualization of splice junctions and alternative splicing events from RNA-Seq data. Specifically, it allows easy identification and characterization of splice junctions, and holds a versatile computational pipeline for in-depth annotation and classification of alternative splicing with different patterns. Moreover, it provides a user-friendly environment in which an alternative splicing landscape can be displayed in a straightforward and flexible manner. In conclusion, SplicingViewer can be widely used for studying alternative splicing easily and efficiently. SplicingViewer can be freely accessed at http://bioinformatics.zj.cn/splicingviewer.  相似文献   

10.
ProSplicer is a database of putative alternative splicing information derived from the alignment of proteins, mRNA sequences and expressed sequence tags (ESTs) against human genomic DNA sequences. Proteins, mRNA and ESTs provide valuable evidence that can reveal splice variants of genes. The alternative splicing information in the database can help users investigate the alternative splicing and tissue-specific expression of genes.  相似文献   

11.

Background

The 3′ splice site (SS) at the end of pre-mRNA introns has a consensus sequence (Y)nNYAG for constitutive splicing of mammalian genes. Deviation from this consensus could change or interrupt the usage of the splice site leading to alternative or aberrant splicing, which could affect normal cell function or even the development of diseases. We have shown that the position “N” can be replaced by a CA-rich RNA element called CaRRE1 to regulate the alternative splicing of a group of genes.

Results

Taking it a step further, we searched the human genome for purine-rich elements between the -3 and -10 positions of the 3′ splice sites of annotated introns. This identified several thousand such 3′SS; more than a thousand of them contain at least one copy of G tract. These sites deviate significantly from the consensus of constitutive splice sites and are highly associated with alterative splicing events, particularly alternative 3′ splice and intron retention. We show by mutagenesis analysis and RNA interference that the G tracts are splicing silencers and a group of the associated exons are controlled by the G tract binding proteins hnRNP H/F. Species comparison of a group of the 3′SS among vertebrates suggests that most (~87%) of the G tracts emerged in ancestors of mammals during evolution. Moreover, the host genes are most significantly associated with cancer.

Conclusion

We call these elements together with CaRRE1 regulatory RNA elements between the Py and 3′AG (REPA). The emergence of REPA in this highly constrained region indicates that this location has been remarkably permissive for the emergence of de novo regulatory RNA elements, even purine-rich motifs, in a large group of mammalian genes during evolution. This evolutionary change controls alternative splicing, likely to diversify proteomes for particular cellular functions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1143) contains supplementary material, which is available to authorized users.  相似文献   

12.
使用估计的反应自由能预测组成性和可变剪接位点   总被引:2,自引:0,他引:2  
基因结构预测中的一个重要步骤是精确地识别剪接位点。基于剪接反应的基本物理原则,最大信息原理被应用到剪接反应的理论分析中,进而导出了反应自由能估计表达式。作为一个简化模型,这个表达式能被用来估计一个5′剪接区或者3′剪接区所参与的剪接反应中的自由能变化。它不但较全面地概括了各个碱基之间的关联,而且还考虑了基因组背景概率的影响。这个反应自由能表达式被用来预测了人类基因中的组成性和可变剪接位点,预测结果是令人满意的,其预测能力比得上当前的一些流行方法。这说明最大信息原理可以作为研究某些核酸-蛋白质相互作用系统(如剪接反应)的理论出发点,导出的反应自由能表达式较好地符合了剪接反应过程。  相似文献   

13.
14.
Alternative splicing and bioinformatic analysis of human U12-type introns   总被引:1,自引:0,他引:1  
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.  相似文献   

15.
16.
17.
18.
Xia H  Bi J  Li Y 《Nucleic acids research》2006,34(21):6305-6313
Alternative splicing plays an important role in regulating gene expression. Currently, most efficient methods use expressed sequence tags or microarray analysis for large-scale detection of alternative splicing. However, it is difficult to detect all alternative splice events with them because of their inherent limitations. Previous computational methods for alternative splicing prediction could only predict particular kinds of alternative splice events. Thus, it would be highly desirable to predict alternative 5'/3' splice sites with various splicing levels using genomic sequences alone. Here, we introduce the competition mechanism of splice sites selection into alternative splice site prediction. This approach allows us to predict not only rarely used but also frequently used alternative splice sites. On a dataset extracted from the AltSplice database, our method correctly classified approximately 70% of the splice sites into alternative and constitutive, as well as approximately 80% of the locations of real competitors for alternative splice sites. It outperforms a method which only considers features extracted from the splice sites themselves. Furthermore, this approach can also predict the changes in activation level arising from mutations in flanking cryptic splice sites of a given splice site. Our approach might be useful for studying alternative splicing in both computational and molecular biology.  相似文献   

19.
水稻NBS-LRR基因选择性剪接的全基因组检测及分析   总被引:1,自引:0,他引:1  
顾连峰  郭荣发 《遗传学报》2007,34(3):247-257
选择性剪接是促进基因组复杂性和蛋白质组多样性的一种主要机制,但是对水稻NBS-LRR序列选择性剪接的全基因组分析却未见报道。通过隐马尔柯夫模型搜索,从TIGR数据库里得到了855条编码NBS-LRR基序的序列。利用这些序列在KOME、TIGR基因索引及UniProt三个数据库中进行同源搜索,获得同源的完整cDNA序列、假设一致性序列和蛋白质序列。再利用Spidey和SIM4程序把完整cDNA序列和假设一致性序列联配到相应的BAC序列上来预测选择性剪接。蛋白质序列和基因组序列之间的联配使用tBLASTn。在这875个NBS-LRR基因中,119个基因具有选择性剪接现象,其中包括71内含子保留,20个外显子跳跃,25个选择性起始,16个选择性终止,12个5′端的选择性剪接和16个3′端选择性剪接。大多数选择性剪接都为两个和多个转录本所支持。可以通过访问http://www.bioinfor.org查询这些数据。进而通过生物信息学分析剪接边界发现外显子跳跃和内含子保留的‘GT…AG’的规则不如组成型的保守。这暗示了它们是通过不同的调控机制来指导剪接变构体的形成。通过分析内含子保留对蛋白质的影响,发现选择性剪接的蛋白更倾向于改变其C端氨基酸序列。最后对选择性剪接的组织分布和蛋白质定位进行分析,结果表明选择性剪接的最大类的组织分布是根和愈伤组织。超过1/3剪接变构体的蛋白质定位是质膜和细胞质。这些选择性剪接蛋白可能在抗病信号转导中起到重要作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号