首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following a reduced pressure in the left ventricle, elevated concentrations of sodium ions enhanced by half the contraction force of the rat isolated heart. This effect was shown to be independent of the Na-channels blockers or Na/H exchange of caffeine but quite susceptible to sodium channel blockers, caffeine, and the blocking agent for Na-Ca exchange Ni2+. A decrease in potassium concentration amplified, and elevation of K+ level attenuated the positive inotropic effect of the elevated concentration of sodium ions. The effect was preserved even after heart arrest induced by verapamil. The findings suggest that elevated concentration of sodium ions may affect the Na+/Ca2+ exchange and provoke Ca2+ release from sarcoplasmic reticulum by means of changing the sodium gradient. These data corroborate the Leblanc and Hume hypothesis of the sodium-induced calcium ions release from sarcoplasmic reticulum.  相似文献   

2.
Treatment of rat small intestine with EDTA produced isolated enterocytes with plasma membranes which were permeable to small ions. When resuspended in a medium designed to resemble the intracellular medium, Ca2+ was accumulated into the cells. Both mitochondrial and a non-mitochondrial (presumably endoplasmic reticulum) compartments were responsible for sequestering the cation, as indicated by the effects of the mitochondrial inhibitors oligomycin and antimycin and of the Ca-ATPase inhibitor sodium orthovanadate assayed at low (0.9 microM) and high (12 microM) free Ca2+ concentrations. Addition of inositol (1,4,5) trisphosphate induced a rapid release of Ca2+ from the non mitochondrial compartment. The effect of inositol trisphosphate was concentration dependent and showed 50% of maximal release at 2 M. Neither cyclic AMP nor dibutyryl cyclic AMP caused release of Ca2+. These findings lend novel support to the possibility that Ca-mediated control of ionic transport in the small intestine is exerted through the phosphatidylinositol-protein kinase C transduction mechanism.  相似文献   

3.
Transient stretch of cardiac muscle during a twitch contraction may dissociate Ca2+ from myofilaments into the cytosol at the moment of quick release of the muscle. We studied the effect of stretch and quick release of trabeculae on changes in intracellular Ca2+ ([Ca2+]i) during triggered propagated contractions (TPCs). Trabeculae were dissected from the right ventricle of 9 rat hearts. [Ca2+]i was measured using electrophoretically injected fura-2. Force was measured using a silicon strain gauge and sarcomere length was measured using laser diffraction techniques. Reproducible TPCs (n = 13) were induced by trains of electrical stimuli (378 +/- 19 ms interval) for 7.5 s at [Ca2+]o of 2.0 mM (27.9 +/- 0.2 degrees C). The latency of the TPC force and the underlying increase in [Ca2+]i was calculated from the time (TimeF) between the last stimulus and the peak of TPC force (PeakF), or the time (TimeCa) between the last stimulus and the peak of the increase in [Ca2+]i during the TPCs (PeakCa). As a result of a 10% increase in muscle length for 150-200 ms during the last stimulated twitches, TimeF and TimeCa decreased and PeakF and PeakCa increased significantly (n = 13). In addition, transient stretch sometimes induced a twitch contraction subsequent to the accelerated TPC and its underlying increase in [Ca2+]i. These results suggest that Ca2+ binding and dissociation from the myofilaments by the stretch and quick release of muscle may modulate the TPC force and the underlying increases in [Ca2+]i and play an important role in the induction of arrhythmias.  相似文献   

4.
Rapid shortening of active cardiac muscle [quick release (QR)] dissociates Ca2+ from myofilaments. We studied, using muscle stretches and QR, whether Ca2+ dissociation affects triggered propagated contractions (TPCs) and Ca2+ waves. The intracellular Ca2+ concentration was measured by a SIT camera in right ventricular trabeculae dissected from rat hearts loaded with fura 2 salt, force was measured by a silicon strain gauge, and sarcomere length was measured by laser diffraction while a servomotor controlled muscle length. TPCs (n = 27) were induced at 28 degrees C by stimulus trains (7.5 s at 2.65 +/- 0.13 Hz) at an extracellular Ca2+ concentration ([Ca2+]o) = 2.0 mM or with 10 microM Gd3+ at [Ca2+]o = 5.2 +/- 0.73 mM. QR during twitch relaxation after a 10% stretch for 100-200 ms reduced both the time between the last stimulus and the peak TPC (PeakTPC) and the time between the last stimulus and peak Ca2+ wave (PeakCW) and increased PeakTPC and PeakCW (n = 13) as well as the propagation velocity (Vprop; n = 8). Active force during stretch also increased Vprop (r = 0.84, n = 12, P < 0.01), but Gd3+ had no effect (n = 5). These results suggest that Ca2+ dissociation by QR during relaxation accelerates the initiation and propagation of Ca2+ waves.  相似文献   

5.
3',5'-CAMP phosphodiesterase was partially purified from bovine cerebral cortex. A heat-stable activating factor was separated from the enzyme by chromatography on DEAE-cellulose. The enzyme in crude ammonium sulfate fractions was stimulated by 5 mM CaCl2. This stimulation was reversed by the calcium chelator EGTA. The main phosphodiesterase peak obtained by DEAE-cellulose chromatography was not stimulated by Ca2+. Upon addition of column effluent containing a heat stable factor, Ca2+ activation was restored. Protein activator was inactive when endogenous contaminating Ca2+ was complexed with EGTA. It was concluded that activation of phosphodiesterase requires the presence of both activator and Ca1+. From an analysis of activation of cGMP hydrolysis a kinetic model for the interaction of Ca2+ and protein activator with the phosphodiesterase was developed. Heterotropic cooperativity between the binding of Ca2+ and protein activator to the phosphodiesterase was observed, i.e., Ca1+ decreased the apparent dissociation constant for protein activator and protein activator decreased the apparent dissociation constant for Ca2+.  相似文献   

6.
The kinetics of 45Ca2+ uptake, efflux, and calcium potentiation of amylase release by slices of rat parotid glands were examined. Pretreatment of the tissue with 11.25 mM 45Ca2+ medium increased the total tissue 45calcium content. Lanthanum (1 mM) decreased tissue uptake, blocked the slow components of exchange and appeared to inhibit transcellular calcium movement. Neither dibutyryl cyclic AMP nor caffeine caused consistently significant effects on 45Ca2+ kinetics, or total 45calcium content. Carbamylcholine increased the initial rate of 45Ca2+ uptake, but had no effect on total uptake. Elevation of the extracellular Ca2+ concentration to 11.25 mM during stimulation of amylase release resulted in an initial decrease in the rate of amylase release followed by a potentiation of release which developed slowly, requiring 40--50 min to reach the maximal response. The inability to detect release-related changes in either calcium influx or mobilization, and the lengthy times and high Ca2+ concentrations required to achieve calcium potentiation suggests that calcium does not couple amylase release.  相似文献   

7.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

8.
We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monitor the occurrence of the mechanical manifestation of spontaneous SR Ca2+ release, i.e., the spontaneous contractile wave. In rat myocytes exposed to increasing bathing [Ca2+] (Cao) from 0.25 to 10 mM, the Cao at which the peak twitch amplitude occurred in a given cell was not unique but varied with the rate of stimulation or the presence of drugs: in cells stimulated at 0.2 Hz in the absence of drugs, the maximum twitch amplitude occurred in 2 mM Cao; a brief exposure to 50 nM ryanodine before stimulation at 0.2 Hz shifted the Cao of the maximum twitch amplitude to 7 mM. In cells stimulated at 1 Hz in the absence of drugs, the maximum twitch amplitude occurred in 4 mM Cao; 1 microM isoproterenol shifted the Cao of the maximum twitch amplitude to 3 mM. Regardless of the drug or the stimulation frequency, the Cao at which the twitch amplitude saturated varied linearly with the Cao at which spontaneous Ca2+ release first occurred, and this relationship conformed to a line of identity (r = 0.90, p = less than 0.001, n = 25). The average peak twitch amplitude did not differ among these groups of cells. In other experiments, (a) the extent of rest potentiation of the twitch amplitude in rat myocytes was also limited by the occurrence of spontaneous Ca2+ release, and (b) in both rat and rabbit myocytes continuously stimulated in a given Cao, the twitch amplitude after the addition of ouabain saturated when spontaneous contractile waves first appeared between stimulated twitches. A mathematical model that incorporates this interaction between action potential-mediated SR Ca2+ release and the occurrence of spontaneous Ca2+ release in individual cells predicted the shape of the Cao-twitch relationship observed in other studies in intact muscle. Thus, the occurrence of spontaneous SR Ca2+ release is a plausible mechanism for the saturation of the inotropic response to Ca2+ in the intact myocardium.  相似文献   

9.
In cultured rat arterial smooth muscle cells treated with quin 2, cytosolic Ca2+ transients induced by norepinephrine were recorded microfluorometrically. In the presence or absence of extracellular Ca2+, norepinephrine induced transient and dose-dependent elevations in cytosolic Ca2+, with a similar time course, the peak levels being observed at 2 min. These transient elevations in cytosolic Ca2+ were dose-dependently inhibited by alpha-adrenergic antagonists, the order of potency being prazosin greater than phentolamine greater than yohimbine, irrespective of the presence of extracellular Ca2+. We propose that with or without extracellular Ca2+, norepinephrine activates mainly alpha-1 adrenoceptors leading to a release of Ca2+ from intracellular stores. This would explain the transient elevation in cytosolic Ca2+ in rat aortic vascular smooth muscle cells in primary culture.  相似文献   

10.
We examined the effects of pharmacological alteration of Ca2+ sources on mechanical and energetic properties of paired-pulse ("bigeminic") contractions. The fraction of heat release that is related to pressure development and pressure-independent heat release were measured during isovolumic contractions in arterially perfused rat ventricles. The heat released by regular and bigeminic contractions showed two brief pressure-independent components (H1 and H2) and a pressure-dependent component (H3). We used the ratio of active heat (Ha') to pressure-time integral (PtI) and the ratio of H3 to PtI to estimate the energetic cost of muscle contraction (overall economy) and pressure maintenance (contractile economy), respectively. Neither of these ratios was affected by stimulation pattern. Caffeine (an inhibitor of sarcoplasmic reticulum function) significantly decreased mechanical responses and increased the energetic cost of contraction (delta = 101 +/- 12.6%). Verapamil (an L-type Ca2+ channel blocker) decreased pressure maintenance of extrasystolic (delta = 43.4 +/- 3.7%) and postextrasystolic (delta = 37.5 +/- 3.5%) contractions without affecting postextrasystolic potentiation, suggesting that a verapamil-insensitive fraction is responsible for potentiation. The verapamil-insensitive fraction was further studied in the presence of lithium (45 mM) and KB-R7943 (5 microM), inhibitors of the Na+/Ca2+ exchanger. Both agents decreased all mechanical responses, including postextrasystolic potentiation (delta = 67.3 +/- 3.3%), without altering overall or contractile economies, suggesting an association of the verapamil-insensitive Ca2+ fraction to the sarcolemmal Na+/Ca2+ exchanger. The effect of the inhibitors of the Na+/Ca2+ exchanger on potentiation suggests an increased participation of extracellular Ca2+ (and, thus, a redistribution of the relative participation of the Ca2+ pools) during bigeminic contractions in rat myocardium.  相似文献   

11.
Major questions in excitation--contraction coupling of fast skeletal muscle concern the mechanism of signal transmission between sarcolemma and sarcoplasmic reticulum (SR), the mechanism of SR Ca release, and operation of the SR active transport system during excitation. Intracellular Ca movement can be studied in skinned muscle fibers with more direct control, analysis of 45Ca flux, and simultaneous isometric force measurements. Ca release can be stimulated by bath Ca2+ itself, ionic "depolarization," Mg2+ reduction, or caffeine. The effectiveness of bath Ca2+ has suggested a possible role for Ca2+ in physiological release, but this response is difficult to analyze and evaluate. Related evidence emerged from analysis of other responses: with all agents studied, stimulation of 45Ca efflux is highly Ca2+-dependent. The presence of a Ca chelator prevents detectable stimulation by ionic "depolarization" or Mg2+ reduction and inhibits the potent caffeine stimulus; inhibition is graded with chelator concentration and caffeine concentration, and is synergistic with inhibition by increased Mg2+. The results indicate that a Ca2+-dependent pathway mediates most or all of stimulated 45Ca efflux in skinned fibers, and has properties compatible with a function in physiological Ca release.  相似文献   

12.
Using an intracellularly trapped dye, quin 2, effects of K+-depolarization on cytosolic free calcium concentrations were recorded microfluorometrically in rat aorta vascular smooth muscle cells in primary culture. When the cells were exposed to high extracellular K+ in Ca+-free media containing 2mM EGTA, there was a transient and dose-dependent elevation of cytosolic Ca2+ concentrations. However, the concentration of the cytosolic Ca2+ was not elevated when the intracellularly stored Ca2+ was depleted by the repetitive treatment with caffeine prior to the application of high K+. Thus depolarization of plasma membrane, per se, directly induces a release of Ca2+ from intracellular storage sites in vascular smooth muscle cells, and the main fraction of this released Ca2+ is derived from the caffeine sensitive storage sites; perhaps from the sarcoplasmic reticulum.  相似文献   

13.
The effects of 50 microM lanthanum (La3+) on the contractile force, rate and coronary flow of rat hearts perfused with solutions containing 2.5, 5, 7.5 mM calcium (Ca2+) have been investigated. La3+ produced a rapid and marked decrease in contractile force within 1-3 min ("early La(3+)-effect"). The inhibition of contractility by La3+ was reduced progressively when the Ca2+ ion concentration in the perfusion fluid was raised from 2.5 to 7.5 mM. However, after 10-80 min of La3+ perfusion the contractile force was increased significantly ("late La(3+)-effect"). Elevation of Ca2+ during exposure to La3+ increased its effect. During the late La(3+)-effect, a marked decrease in heart rate and a significant increase in time to reach peak tension, time for half relaxation and twitch duration was observed. High concentrations of perfusate Ca2+ decreased the chronotropic response to La3+, in contrast, elevated Ca2+ potentiated La(3+)-induced increase in time to reach peak tension, time for half relaxation and twitch duration. La3+ produced a significant decrease in coronary flow. High Ca2+ augmented the decrease coronary flow. The findings indicate that La3+ may produce marked effects on myocardial function. High extracellular Ca2+ reduces the La(3+)-induced initial decrease in force of contraction, but potentiates the late increase in contractile force by La3+. Elevated external Ca2+ also increases the effects of La3+ on twitch parameters, heart rate and coronary flow.  相似文献   

14.
Most of the glucose 1,6-P2 phosphatase activity of pig skeletal muscle is present in the cytosolic fraction. Four peaks of glucose 1,6-P2 phosphatase activity are obtained when the cytosolic fraction from pig muscle is subjected to DE-cellulose chromatography. All the peaks hydrolyze other phosphocompounds in addition to glucose 1,6-P2. The glucose 1,6-P2 phosphatase activity of the main peak shows an optimal neutral pH. It is activated by divalent cations, Mg2+ being more effective than Mn2+. The addition of Ca2+ or EGTA does not affect the enzymatic activity. IMP does not possess any effect. It is concluded that this enzyme is different from the glucose 1,6-P2 phosphatases found in mouse brain cytosol and rat skeletal muscle.  相似文献   

15.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

16.
The Ca(2+)-releasing mechanisms of the sarcoplasmic reticulum responsible for cardiac muscle contraction in carp were examined and compared with these mechanisms in rats. Morphologically, the ventricular muscles of the carp heart are composed of an outer compact and an inner spongy layer. In the present study, ventricular muscle preparations were obtained from the compact layer of the carp heart, because the spongy layer does not contribute significantly to the overall force of contraction. Electron microscopic observations showed that the sarcoplasmic reticulum in the carp ventricular muscle, compared to that in the rat ventricular muscle, was poorly developed. Consistent with this finding, specific [3H]ryanodine binding to partially purified sarcoplasmic reticulum preparations obtained from carp ventricular muscle as compared with the preparations isolated from the rat ventricular muscle showed a lower affinity and a smaller number of binding sites. Additionally, a higher Ca2+ concentration was required to cause a half maximal stimulation of [3H]ryanodine binding in the carp heart. In skinned ventricular muscle fibers isolated from carp hearts, the caffeine-induced contracture was significantly weaker than that observed in rat hearts. These results suggest that, in carp hearts, the sarcoplasmic reticulum has an important role as a supply source of Ca2+ for muscle contraction, though the storage capacity and/or amount of Ca2+ release in carp was significantly smaller than that in rats.  相似文献   

17.
Calcium entry blockers and myocardial function   总被引:1,自引:0,他引:1  
Ca2+ enters myocardial cells through a variety of pathways, including in exchange for Na+; by passive diffusion; through voltage-activated, gated channels; and in exchange for K+, Ca2+ entry through the voltage-activated channels is an essential step in excitation-contraction coupling. It is only this component of Ca2+ transport that is inhibited by the Ca2+ entry blockers. As a group, therefore, these drugs interfere with excitation-contraction coupling in heart but not in skeletal muscle. Accordingly they reduce the energy requirements of the heart. Their inhibitory effect on voltage-activated inward transport of Ca2+ into smooth muscle cells also results in dilation of the coronary vessels, with improvement in coronary perfusion, and of peripheral vessels, with after-load reduction. The resultant action of these drugs in maintaining myocardial energy balance and intracellular Ca2+ homeostasis is therefore complex, and tends toward preservation of myocardial structure and function after episodes of ischemia. Although the Ca2+ entry blockers prevent protein release and preserve ultrastructure in damaged myocardium, this is probably an indirect effect of their ability to impede slow channel transport of Ca2+.  相似文献   

18.
The effects of ethanol on both Ca2+ pump activity and Ca2+-induced Ca2+ release in sarcoplasmic reticulum (SR) of rabbit skeletal muscle were studied. In concentrations of 0.1-1.0%, ethanol conspicuously enhanced Ca2+ release from the heavy fraction of SR, whereas a much smaller effect was noted in the light fraction. When Ca2+-induced Ca2+ release was inhibited by 10 mM Mg2+, the Ca2+ pump activities of both the heavy and light SR were the same; the activities were not significantly influenced by 1% ethanol. Ethanol itself did not release Ca2+ from the heavy SR. However, it appeared to render the heavy SR more permeable to Ca2+, thereby decreasing the amount of storable Ca2+. This action of ethanol may be related to the mechanism of its negative inotropic effect.  相似文献   

19.
The effect of GTP on Ca2+ uptake and release was studied in a microsomal fraction isolated from neuroblastoma x glioma hybrid NG108-15 cells. GTP did not alter the ATP-dependent initial uptake of Ca2+ but markedly enhanced the efflux of Ca2+ from microsomes. GTP-dependent Ca2+ release requires the presence of millimolar concentration of Mg2+. The effect of GTP was not mimicked by other nucleotides and was competitively blocked by the thiophosphate analogue of GTP, GTP gamma S but not by the non-hydrolyzable nucleotide GMP-PNP. Addition of an inhibiting concentration of GTP gamma S after completion of GTP-induced calcium release did not result in a re-uptake of Ca2+, showing the irreversibility of the releasing effect of GTP. Our data are consistent with the hypothesis of Ca2+-dependent GTP-induced opening of a channel responsible for vectorial transport of Ca2+ ions from one intracellular compartment to another. A model is proposed suggesting that the GTP-binding protein is a GTP-specific diacylglycerol kinase.  相似文献   

20.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号