首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenesis enables the elucidation of gene function; however, constant transgene expression is not always desired. The tetracycline responsive system was devised to turn on and off transgene expression at will. It has two components: a doxycycline (dox)-controlled transactivator (TA) and an inducible expression cassette. Integration of these transgenes requires two transfection steps usually accomplished by sequential random integration. Unfortunately, random integration can be problematic due to chromatin position effects, integration of variable transgene units, and mutation at the integration site. Therefore, targeted transgenesis and knockin were developed to target the TA and the inducible expression cassette to a specific location, but these approaches can be costly in time, labor, and money. Here, we describe a one-step Cre-mediated knockin system in mouse embryonic stem cells that positions the TA and inducible expression cassette to a single location. Using this system, we show dox-dependent regulation of eGFP at the DNA topoisomerase 3β promoter. Because Cre-mediated recombination is used in lieu of gene targeting, this system is fast and efficient.  相似文献   

2.
Recombinase-mediated cassette exchange (RMCE), when applied to mouse embryonic stem (ES) cells, promises to increase the ease with which genetic alterations can be introduced into targeted genomic loci in the mouse. However, existing selection strategies for identifying ES cells in which replacement DNA cassettes from a carrier plasmid have been exchanged correctly into a defined locus are suboptimal. Here, we report the generation in mouse ES cells of a loxed cassette acceptor (LCA) allele within the glucokinase (gk) gene locus. Using the gkLCA as a test allele, we developed a staggered positive-negative selection strategy that facilitates efficient identification of ES cell clones in which a DNA replacement cassette from a carrier plasmid has been exchanged correctly into the gkLCA allele. This selection strategy, by facilitating more efficient production of ES cell clones with various replacement DNA cassettes, should accelerate targeted repetitive introduction of gene modifications into the mouse.  相似文献   

3.
Two recombination steps in embryonic stem (ES) cells were adopted to generate a floxed Germ Cell Nuclear Factor (GCNF) allele. First, a targeting vector containing a loxP site upstream of exon 4, encoding the DNA binding domain (DBD), and a floxed NeoTK double selection cassette downstream of exon 4 was integrated into the GCNF locus by homologous recombination. Second, a Cre-expressing vector was transiently introduced to remove the floxed NeoTK cassette via site-specific recombination. Heterogeneous ES cell populations were found in a single colony after Cre transfection and were separated using an ES cell re-pick step. Floxed GCNF mice were generated and had normal GCNF expression in the adult gonads. Using the Msx2Cre transgenic mice, the floxed GCNF can be completely deleted in the female germline. Taken together, the floxed GCNF mice were successfully generated and female germline deletion of the floxed GCNF allele was achieved using Msx2Cre mice.  相似文献   

4.
Continuous expression of Cre recombinase has the potential to yield toxic side effects in various cell types, thereby limiting applications of the Cre/loxP system for conditional mutagenesis. In this study, we investigate the potential of Cre protein transduction to overcome this limitation. COS-7, CV1-5B, and mouse embryonic stem (ES) cells treated with cell-permeant Cre (HTNCre) maintain a normal growth behavior employing Cre concentrations sufficient to induce recombination in more than 90% of the cells, whereas continuous application of high doses resulted in markedly reduced proliferation. HTNCre-treated ES cells maintain a normal karyotype and are still able to contribute to the germline. Moreover, we present an enhanced HTNCre purification protocol that allows the preparation of a concentrated glycerol stock solution, thereby enabling a considerable simplification of the Cre protein transduction procedure. The protocol described here allows rapid and highly efficient conditional mutagenesis of cultured cells.  相似文献   

5.
Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1‐Cre (Twist2‐Cre) has been widely used to target skeletal lineage cells as well as other mesoderm‐derived cells. Here we report that Dermo1‐Cre exhibits spontaneous male germline recombination activity leading to a Cre‐mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled‐coil 1, also known as Fip200 [FAK‐family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1‐Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1‐Cre transgene can be avoided by using female mice as parental Dermo1‐Cre carriers.  相似文献   

6.
Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1‐cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL‐2) protein in placenta along with increased expression toward the end of pregnancy. PL‐2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1‐cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1‐cre;R26GRR mice revealed that tdsRed‐positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1‐cre;R26GRR testes suggested that Cre‐mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1cre mice line provides a unique resource to understand testicular germ‐cell development. genesis 54:389–397, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
To generate a mouse line which allows inducible, Cre/loxP‐dependent recombination in adipocytes, we used RedE/RedT‐mediated recombineering to insert the CreERT2‐transgene, which encodes a fusion protein of Cre and a mutated tamoxifen‐responsive estrogen receptor, into the start codon of the adipocyte‐specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreERT2 mouse line (97%–99%), while no recombination was seen in vehicle‐treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreERT2 in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreERT2 mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue. genesis 48:618–625, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Here we describe the generation of the Nes-Cre1 transgenic mouse line in which Cre recombinase expression is controlled by the rat nestin promoter and intron 2 enhancer. This line has previously been used for conditional loss-of-function studies of various genes in the central nervous system and first branchial arch ectoderm. Here we report the detailed temporal and spatial recombination pattern of Nes-Cre1 using three different reporters of Cre-mediated recombination, ROSA26R (R26R), Z/AP, and Z/EG. Cre/loxP recombination was detected in embryos as early as the head-fold stage. By embryonic day (E)15.5 recombination occurred in virtually all cells of the nervous system and unexpectedly also in somite-derived tissues and kidneys. Tissues with little or no recombination included heart, liver, thymus, and lung. This study suggests that Nes-Cre1-mediated recombination occurs in progenitor cell types present in the neuroectoderm, the developing mesonephros, and the somites.  相似文献   

9.
10.
Cre-mediated apoptosis has been observed in many contexts in mice expressing Cre-recombinase and can confound the analysis of genetically engineered conditional mutant or transgenic alleles. Several mechanisms have been proposed to explain this phenomenon. We find that the degree of apoptosis induced correlates roughly with the copy number of loxP sites present in the genome and that some level of increased apoptosis accompanies the presence of even only a few loxP sites, as occurs in conditional floxed alleles. Cre-induced apoptosis in this context is completely p53-dependent, suggesting that the apoptosis is stimulated by p53 activation in response to DNA damage incurred during the process of Cre-mediated recombination.  相似文献   

11.
Induced DNA recombination by Cre recombinase protein transduction   总被引:1,自引:0,他引:1  
Cre is a DNA recombinase that recognizes 34 base-pair loxP sites of recombination. We have developed a cell-permeable Cre recombinase, TATCre, that is capable of mediating deletion of loxP-flanked targets by simply adding TATCre to cell cultures. Thus, TATCre allows efficient induced DNA recombination without the use of a Cre recombinase transgene or any other genetic material and should prove useful for the genetic manipulation of a wide variety of cell types that have been engineered to possess loxP sites.  相似文献   

12.
13.
在制备转基因家畜过程中的一个关键步骤是使用选择标记基因 (Selectable marker genes,SMGs) 将转基因整合细胞从大量的正常细胞中筛选出来,这导致了SMGs整合入家畜的基因组内持续传递给后代。SMGs已被证明能够显著影响基因组内整合位点处的基因调控,也增加了对转基因动物安全评价的复杂性。为了确定转基因山羊制备过程中SMGs的删除时机和删除方法,在体细胞克隆前后两个时段内,利用Cre/loxP系统删除SMGs的可行性,同时比较了蛋白转导和质粒共转染两种Cre导入方式的删除效率。结果表明:尽管在首次对山羊成纤维细胞进行遗传修饰后即可进行SMGs删除,但两次遗传修饰导致细胞严重老化,无法用于后续的体细胞克隆羊制备。在转基因山羊的成体细胞中删除SMGs不存在上述问题,成功率高,缺点是试验周期长、耗资增大。Cre表达质粒瞬时转染能够删除SMGs,但有超过30%的无SMGs细胞克隆中整合有质粒序列。TAT-CRE蛋白质转导方法可以避免引入的新外源基因,SMGs删除率达到43.9%~72.8%,是一种较佳的SMGs删除手段。  相似文献   

14.
Conditional gene targeting using the Cre/loxP technology generally includes integration of a selection marker cassette flanked by loxP recognition sites (floxed) in the target gene locus. Subsequent marker removal avoids possible impairment of gene expression or mosaicism due to partial and total deletions after Cre-mediated recombination in vivo. The use of deleter Cre mice for in vivo marker removal in floxed connexin43 mice revealed considerable mosaicism, but no selective marker removal. In addition, we noted that several Cre transgenic lines displayed spontaneous ectopic activity, reminiscent of deleter Cre mice, and required the confirmation of cell type-specific deletion in every individual mouse. When we used myosin heavy chain promoter Cre (alphaMyHC-Cre) mice for cardiomyocyte specific deletion, we observed, in addition to cardiomyocyte-restricted or complete excision, selective marker removal in a subgroup of mice as well. Thus, selective marker removal can be achieved as a byproduct of cell-type restricted deletion.  相似文献   

15.
A mammalian body is composed of more than 200 different types of cells. The purification of a certain cell type from tissues/organs enables a wide variety of studies. One popular cell purification method is immunological isolation, using antibodies against specific cell surface antigens. However, this is not a general‐purpose method, since suitable antigens have not been found in certain cell types, including embryonic gonadal somatic cells and Sertoli cells. To address this issue, we established a knock‐in mouse line, named R26 KI, designed to express the human cell surface antigen hCD271 through Cre/loxP‐mediated recombination. First, we used the R26 Kl mouse line to purify embryonic gonadal somatic cells. Gonadal somatic cells were purified from the R26 KI; Nr5a1‐Cre‐transgenic (tg) embryos almost equally as efficiently as from Nr5a1‐hCD271‐tg embryos. Second, we used the R26 KI mouse line to purify Sertoli cells successfully from R26 KI; Amh‐Cre‐tg testes. In summary, we propose that the R26 KI mouse line is a powerful tool for the purification of various cell types. genesis 53:387–393, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
17.
We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.  相似文献   

18.
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.  相似文献   

19.
The Bambi (Bmp and activin membrane-bound inhibitor) gene encodes a transmembrane protein highly similar in amino acid sequence to transforming growth factor-beta (TGF-beta receptors, however, the Bambi intracellular domain is short and lacks a serine/threonine-kinase domain that is essential for transducing TGF beta signaling. Previous biochemical assays showed that Bambi interacts directly with BMP receptors and antagonizes BMP signaling. Interestingly, the expression of Bambi largely overlaps, both temporally and spatially, with that of Bmp4 during early embryonic development in Xenopus, zebrafish, and mice, which led to the hypothesis that Bambi may function to regulate BMP signaling during embryogenesis. To directly analyze the roles of Bambi during embryonic development, we generated mice carrying a conditional allele of Bambi, Bambi(flox), with loxP sequences flanking the first exon that encodes the N-terminus and signal peptide region of the Bambi protein. Mice homozygous for this targeted conditional allele appear normal and fertile. We crossed the Bambi(flox)/+ mice to the EIIa-Cre transgenic mice and generated mice carrying deletion of the first exon of the Bambi gene. Surprisingly, mice homozygous for the deleted allele were viable, fertile and did not exhibit any discernible developmental defect. Our data exclude an essential role for Bambi in mouse embryonic development and postnatal survival.  相似文献   

20.
To dissect the tissue-specific functions of atrial natriuretic peptide (ANP), we recently introduced loxP sites into the murine gene for its receptor, guanylyl cyclase-A (GC-A), by homologous recombination (tri-lox GC-A). For either smooth-muscle or cardiomyocyte-restricted deletion of GC-A, floxed GC-A mice were mated to transgenic mice expressing Cre-recombinase under the control of the smooth-muscle SM22 or the cardiac alphaMHC promoter. As shown in these studies, Cre-mediated recombination of the floxed GC-A gene fully inactivated GC-A function in a cell-restricted manner. In the present study we show that alphaMHC-Cre, but not SM22-Cre, with high frequency generates genomic recombinations of the floxed GC-A gene segments which were transmitted to the germline. Alleles with partial or complete deletions were readily recovered from the next generation, after segregation of the Cre-transgene. We took advantage of this strategy to generate a new mouse line with global, systemic deletion of GC-A. Doppler-echocardiographic and physiological studies in these mice demonstrate for the first time the tremendous impact of ANP/GC-A dysfunction on chronic blood volume homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号