首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The insulin receptor is a complex membrane-spanning glycoprotein composed of two alpha-subunits and two beta-subunits connected to form an alpha 2 beta 2 holoreceptor. Insulin binding to the extracellular alpha-subunits activates intracellular beta-subunit autophosphorylation and substrate kinase activity. The current study was designed to differentiate mechanisms of transmembrane signaling by the insulin receptor, specifically whether individual beta-subunits undergo cis- or trans-phosphorylation. We compared relative kinase activities of trypsin-truncated receptors, alpha beta-half receptors, and alpha 2 beta 2 holoreceptors under conditions that allowed us to differentiate intermolecular and intramolecular events. Compared to the insulin-stimulated holoreceptors, the trypsin-truncated receptor undergoes autophosphorylation at similar tyrosine residues and catalyzes substrate phosphorylation in the absence of insulin at a comparable rate. The truncated receptor sediments on a sucrose gradient at a position consistent with a structure comprising a single beta-subunit attached to a fragment of the alpha-subunit and undergoes autophosphorylation in this form in the absence of insulin. Autophosphorylation of the truncated insulin receptor is independent of receptor concentration, and immobilization of the truncated receptor on a matrix composed of an anti-receptor antibody bound to protein A-Sepharose diminishes neither autophosphorylation nor receptor-catalyzed substrate phosphorylation. Therefore, true intramolecular (cis) phosphorylations, which occur within individual beta-subunits derived from trypsin-truncated receptors, lead to kinase activation. However, insulin-stimulated autophosphorylation of insulin receptor alpha beta heterodimers is concentration-dependent, and both autophosphorylation and kinase activity are markedly reduced following immobilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
It has previously been demonstrated that the insulin-mimetic agent trypsin stimulates autophosphorylation of purified insulin receptors and activates the insulin receptor tyrosine kinase in vitro. We now report the effects of trypsin on whole cell tyrosine kinase activation and insulin receptor autophosphorylation. Trypsin treatment of intact adipocytes produces a time-dependent stimulation of tyrosine kinase activity as measured in lectin extracts containing the insulin receptor, or specifically immunoprecipitated insulin receptor samples. Trypsin treatment of adipocytes also results in a loss of insulin binding capacity, and a linear correlation exists between loss of binding and stimulation of tyrosine kinase activity. Exposure of adipocytes to trypsin is known to result in a time- and dose-dependent activation of intracellular glycogen synthase. Examination of the time courses of stimulation of tyrosine kinase and glycogen synthase activation in our system indicates that the stimulation of tyrosine kinase activity by trypsin occurs with sufficient rapidity and magnitude to be consistent with a role of phosphorylation in the activation of glycogen synthase. Trypsin has further been demonstrated to stimulate autophosphorylation of the beta-subunit of the insulin receptor in intact adipocytes. Cells prelabeled with [32P]PO4 for 2 h were exposed to trypsin, and receptors were partially purified over wheat germ agglutinin-agarose columns. Receptors were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the beta-subunit was identified by autoradiography. The protein was extracted and hydrolyzed, and the phosphoamino acids were separated by electrophoresis and quantitated. Two- and five-fold increases in phosphotyrosine were observed with 3 and 10 min of trypsin treatment, respectively. We conclude that trypsin-induced cleavage of the insulin receptor alpha-subunit is relevant to the ability of trypsin to activate the insulin receptor tyrosine kinase in intact adipocytes. We further conclude that autophosphorylation of the insulin receptor and activation of its tyrosine kinase by trypsin may be important to the insulin-mimetic anabolic effects of trypsin.  相似文献   

3.
Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity.  相似文献   

4.
The insulin receptor is an integral membrane glycoprotein (Mr approximately 300,000) composed of two alpha-subunits (Mr approximately 130,000) and two beta-subunits (Mr approximately 95,000) linked by disulphide bonds. This oligomeric structure divides the receptor into two functional domains such that alpha-subunits bind insulin and beta-subunits possess tyrosine kinase activity. The amino acid sequence deduced from cDNA of the single polypeptide chain precursor of human placental insulin receptor revealed that alpha- and beta-subunits consist of 735 and 620 residues, respectively. The alpha-subunit is hydrophilic, disulphide-bonded, glycosylated and probably extracellular. The beta-subunit consists of a short extracellular region which links the alpha-subunit through disulphide bridges, a hydrophobic transmembrane region and a longer cytoplasmic region which is structurally homologous with other tyrosine kinases like the src oncogene product and EGF receptor kinases. The cellular function of insulin receptors is dual: transmembrane signalling and endocytosis of hormone. The binding of insulin to its receptor on the cell membrane induces transfer of signal from extracellular to cytoplasmic receptor domains leading to activation of cell metabolism and growth. In addition, hormone-receptor complexes are internalized leading to intracellular proteolysis of insulin, whereas receptors are recycled to the membrane. These phenomena are kinetically well-characterized, but their molecular mechanisms remain obscure. Insulin receptor in different tissues and animal species are homologous in their structure and function, but show also significant differences regarding size of alpha-subunits, binding kinetics, insulin specificity and receptor-mediated degradation. We suggest that this heterogeneity of receptors may be linked to the diversity in insulin effects on metabolism and growth in various cell types. The purified insulin receptor phosphorylates its own beta-subunit and exogenous protein and peptide substrates on tyrosine residues, a reaction which is insulin-sensitive, Mn2+-dependent and specific for ATP. Tyrosine phosphorylation of the beta-subunit activates receptor kinase activity, and dephosphorylation with alkaline phosphatase deactivates the kinase. In intact cells or impure receptor preparations, a serine kinase is also activated by insulin. The cellular role of two kinase activities associated with the insulin receptor is not known, but we propose that the tyrosine- and serine-specific kinases mediate insulin actions on metabolism and growth either through dual-signalling or sequential pathways.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
H J Goren  M F White  C R Kahn 《Biochemistry》1987,26(8):2374-2382
We have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the beta-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22 degrees C with low concentrations (5-10 micrograms/mL, pH 7.4) of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the beta-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. Mild trypsin digestion reduced the apparent molecular mass of the beta-subunit from 95 to 85 kDa, and then to 70 kDa. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the beta-subunit (alpha Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the beta-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. Treatment of the intact receptor with staphylococcal V8 protease also converted the beta-subunit to an 85-kDa fragment that did not bind to alpha Pep-1, contained about 50% of the initial radioactivity, and lacked pY2 and pY3. Elastase rapidly degraded the receptor to inactive fragments between 37 and 50 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The biochemical properties of insulin receptors from toad retinal membranes were examined in an effort to gain insight into the role this receptor plays in the retina. Competition binding assays revealed that toad retinal membranes contained binding sites that displayed an equal affinity for insulin and insulin-like growth factor I (IGF-I). Affinity labeling of toad retinal membrane proteins with 125I-insulin resulted in the specific labeling of insulin receptor alpha-subunits of approximately 105 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partially reduced (alpha beta-heterodimer) receptors affinity-labeled with 125I-insulin indicated the presence of a disulfide-linked beta-subunit of approximately 95 kDa. Endoglycosidase F digestion of the affinity-labeled alpha-subunits increased their mobility by reducing their apparent mass to approximately 83 kDa. This receptor was not detected by immunoblot analysis with a site-specific antipeptide antibody directed against residues 657-670 of the carboxy terminal of the human insulin receptor alpha-subunit, whereas this antibody did label insulin receptor alpha-subunits from pig, cow, rabbit, and chick retinas. In in vitro autophosphorylation assays insulin stimulated the tyrosine phosphorylation of toad retina insulin receptor beta-subunits. These data indicate that toad retinal insulin receptors have a heterotetrameric structure whose alpha-subunits are smaller than other previously reported neuronal insulin receptors. They further suggest that a single receptor may account for both the insulin and IGF-I binding activities associated with toad retinal membranes.  相似文献   

7.
A soluble derivative of the human insulin receptor cytoplasmic domain, as expressed in insect cells via a Baculovirus vector, is an active protein-tyrosine kinase. In the present study, we find that three forms of the enzyme (48, 43, and 38 kDa) can be partially purified by MonoQ fast protein liquid chromatography. Two-dimensional thin layer phosphopeptide mapping reveals that the 48-kDa enzyme undergoes a rapid autophosphorylation on the same tyrosines (residues 1158, 1162, 1163, 1328, and 1334) that have previously been shown to be major autophosphorylation sites on the native insulin receptor beta-subunit in intact cells. Furthermore, the 48- and 43-kDa proteins are phosphorylated on serine residues by a serine kinase(s) that copurifies through MonoQ fast protein liquid chromatography. Tyrosine autophosphorylation sites 1328 and 1334 and virtually all serine phosphorylation sites are absent in the 38-kDa kinase. Partial tryptic proteolysis of the 48-kDa kinase generates a core 38-kDa enzyme that undergoes autophosphorylation almost exclusively on tyrosines 1158, 1162, and 1163. Phosphorylation of these tyrosine residues occurs in a cascade manner analogous to that found in the intact insulin receptor beta-subunit.  相似文献   

8.
In rat brain cortex synaptosomes insulin stimulated the phosphorylation of its own receptor beta-subunit (94 kDa) as identified by immunoprecipitation with anti-insulin or anti-receptor antiserum. The receptor alpha-subunit (115 kDa) was characterized by specific labeling with 125I-labeled photoreactive insulin. These observations indicate that: (i) insulin receptors in brain are composed of alpha-subunits which bind insulin, and beta-subunits, the phosphorylation of which can be stimulated by insulin; (ii) the size of alpha-subunits in brain is significantly smaller than in other tissues (115 vs 130 kDa), whereas beta-subunits (94 kDa) are identical. We suggest that brain insulin receptors represent a subtype regarding their binding function, whereas their enzyme function is more conserved.  相似文献   

9.
Insulin binding to the alpha-subunit of the purified insulin receptor changed the interaction between beta-subunits. This conformational change was demonstrated after labeling the receptor's beta-subunit by autophosphorylation in the absence of insulin, and then crosslinking the subunits to each other with bis (sulfosuccinimidyl) suberate. The convalent oligomers were resolved by reduction and denaturing gel electrophoresis. Insulin increased the rate of crosslinking, especially the formation of beta-beta dimers. These results support a conformational change following insulin binding, and may reflect the insulin-induced activation of autophosphorylation.  相似文献   

10.
We have studied the properties of muscle insulin receptors obtained from genetically or experimentally-induced obese mice that are both insulin-resistant. Insulin receptors, partially purified by wheat germ agglutinin--agarose chromatography, were studied in a cell-free system for autophosphorylation, for their ability to phosphorylate a synthetic glutamate--tyrosine copolymer and for their binding characteristics. Insulin receptor number was decreased by 25% in muscles from obese mice without any change in their binding affinity. The insulin stimulatory action on its beta-subunit receptor phosphorylation was diminished in preparations from genetically- or experimentally-induced obese mice to a higher degree than the decrease in insulin receptor number. HPLC analysis of the phosphopeptides generated by trypsin treatment of the labeled receptor beta-subunit was identical in lean and obese mice. Similar alteration of the kinase activity was found in obese mice when the phosphorylation of casein or polyglutamate--tyrosine was measured. Trypsin treatment of the receptor preparations was less effective in stimulating the kinase activity in obese mice than in lean mice. These results suggest that the defect in insulin receptor kinase activity reflects an alteration in the transmission of the message from the alpha- to the beta-subunit or an impairment of the enzyme functioning by environmental conditions.  相似文献   

11.
The rat liver insulin receptor   总被引:1,自引:0,他引:1  
Using insulin affinity chromatography, we have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the Mr 125,000 alpha-subunit, the Mr 90,000 beta-subunit, and varying proportions of the Mr 45,000 beta'-subunit. The specific insulin binding of the purified receptor was 25-30 micrograms of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the beta-subunit to beta' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. The rat receptor is particularly subject to destruction. Frequently, we have obtained receptor preparations that did not contain intact beta-subunit. These preparations failed to undergo autophosphorylation, but their insulin binding capacity and binding isotherms were identical with those of receptor containing beta-subunit. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Insulin and IGF-1 receptors contain covalently bound palmitic acid   总被引:2,自引:0,他引:2  
We have studied the biosynthesis of the insulin receptor in a human hepatoma cell line, HepG2. As previously reported, these cells synthesize a disulphide-bonded alpha 2 beta 2 tetrameric insulin receptor. Labelling of HepG2 cells with [3H]palmitate or [3H]myristate followed by immunoprecipitation with a polyclonal antireceptor antibody revealed the incorporation of palmitate, but not myristate, into the beta-subunit and alpha beta-precursor of the receptor in a hydroxylamine-sensitive linkage. The extracellular alpha-subunit was not labelled, demonstrating the specificity of incorporation. Acylation of the insulin receptor was an early event as judged by fatty acid incorporation into the alpha beta-precursor and prevention by protein synthesis inhibitors. Pulse-chase studies demonstrated the expected processing of the alpha beta-precursor to mature alpha- and beta-subunits, but no evidence for preferential turnover of the fatty acid moiety was found. The site of acylation appears to be in the transmembrane or cytoplasmic domain since proteolytic treatment of intact cells produced a truncated beta-subunit still containing label. Binding studies showed that HepG2 cells contain approximately half as many insulin-like growth factor-1 receptors as insulin receptors, raising the possibility that this receptor may also be acylated. Indeed, immunoprecipitation with the antiinsulin receptor serum of MDCK cells expressing IGF-1 receptors, but not insulin receptors, revealed bands corresponding to the alpha beta-precursor, alpha- and beta-subunits, of which the alpha beta-precursor and beta-subunits incorporated [3H]palmitate but the alpha-subunit did not.  相似文献   

13.
Competitive hormone binding studies with membrane and partially purified receptors from Xenopus laevis oocytes revealed that the oocyte possesses high affinity (KD = 1-3 nM) binding sites for both insulin growth factors 1 and 2 (IGF-1 and IGF-2), but not for insulin. Consistent with these findings, IGF-1 activates hexose uptake by Xenopus oocytes with a KA (3 nM) identical with its KD, while IGF-2 and insulin activate hexose uptake with KA values of 50 nM and 200-250 nM, respectively, suggesting activation mediated through an IGF-1 receptor. Both IGF-1 and insulin activate receptor beta-subunit autophosphorylation and, thereby, protein substrate (reduced and carboxyamidomethylated lysozyme, i.e. RCAM-lysozyme) phosphorylation with KA values comparable to their respective KD values for ligand binding and KA values for activation of hexose uptake. The autophosphorylated beta-subunit(s) of the receptor were resolved into two discrete components, beta 1 and beta 2 (108 kDa and 94 kDa, respectively), which were phosphorylated exclusively on tyrosine and which exhibited similar extents of IGF-1-activated autophosphorylation. When added prior to autophosphorylation, RCAM-lysozyme blocks IGF-1-activated autophosphorylation and, thereby, IGF-1-activated protein substrate (RCAM-lysozyme) phosphorylation. Based on these findings, we conclude that IGF-1-stimulated autophosphorylation of its receptor is a prerequisite for catalysis of protein substrate phosphorylation by the receptor's tyrosine-specific protein kinase. The IGF-1 receptor kinase is implicated in signal transmission from the receptor, since anti-tyrosine kinase domain antibody blocks IGF-1-stimulated kinase activity in vitro and, when microinjected into intact oocytes, prevents IGF-1-stimulated hexose uptake.  相似文献   

14.
In order to investigate structure and function of beta-subunit extracellular portion, four polyclonal antibodies (AP1, AP2, AP3 and AP4) toward peptides comprised in this region were generated. None of them recognizes native human and rat insulin receptor both in vitro and in whole cells. Two antibodies, AP1 and AP2, immunoprecipitate isolated (DTT-reduced) human beta-subunits and bind to human IM-9 cell after alpha-subunit tryptic cleavage. Only AP1 recognizes rat beta-subunit both in vitro and in trypsin treated rat FAD cells. These findings suggest that: (i) the extracellular portion of the insulin receptor beta-subunit is partially covered by the alpha-subunit in human and rat native insulin receptors; (ii) human and rat beta-subunit extracellular domains are different, at least in the amino acid sequence corresponding to residues 785-796 of the human insulin receptor.  相似文献   

15.
Affinity-purified insulin receptor was photoaffinity labeled with a cleavable radioactive insulin photoprobe. Exhaustive digestion of the labeled alpha-subunit with endoproteinase Glu-C produced a major radioactive fragment of 23 kDa as a part of the putative insulin-binding domain. This fragment could contain either residues 205-316 or 518-633 of the alpha-subunit. Rat hepatoma cells and Chinese hamster ovary cells were transfected with cDNA encoding a human insulin receptor mutant with a deletion of the cysteine-rich region spanning amino acid residues 124-319. Insulin binding by these cells was not increased in spite of high numbers of the mutant insulin receptors being expressed. A panel of monoclonal antibodies which was specific for the receptor alpha-subunit and inhibited insulin binding immunoprecipitated the photolabeled 23-kDa receptor fragment but not the receptor mutant. A synthetic peptide containing residues 243-251 was specifically bound by agarose-insulin beads. We therefore suggest that the 23-kDa fragment contains residues 205-316, and that insulin binding occurs, in part, in the cysteine-rich region of the alpha-subunit.  相似文献   

16.
The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of [32P]orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identities of the insulin and IGF I receptor beta-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the beta-subunit of the insulin receptor correlated with occupancy of the beta-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the beta-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the beta-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.  相似文献   

17.
Treatment of the multifunctional alpha 2 beta 2 anthranilate synthase complex of Neurospora crassa with elastase produced two fragments of the complex, one possessing anthranilate synthase activity and the other having both indole-3-glycerol phosphate (InGP) synthase and N-(5'-phosphoribosyl)anthranilate (PRA) isomerase activities. Sequencing the NH2 terminus of the InGP synthase-PRA isomerase fragment revealed that cleavage was between positions 237 and 238 of the beta-subunit within a segment of the polypeptide chain which links the glutamine-binding (G) domain with the InGP synthase-PRA isomerase domains. The fragment containing anthranilate synthase activity has a molecular weight of 98,000, as estimated by gel filtration, and is composed of an apparently intact alpha-subunit (70 kDa) associated with the G-domain fragment (29 kDa) derived from the beta-subunit. The alpha X G-domain complex was resistant to further degradation by elastase. When either the alpha 2 beta 2 complex or the alpha X G-domain complex was incubated with trypsin, the alpha-subunit was degraded to a 66-kDa alpha-fragment with reduced enzymatic activity, which was resistant to further cleavage. In contrast, incubation of alpha-subunit alone with either elastase or trypsin resulted in its complete degradation, indicating that association of the alpha-subunit with either G-domain or beta-subunit protected the alpha-subunit from this extensive degradation. A model for the anthranilate synthase complex is proposed in which the trifunctional beta-subunit forms a dimer by the self-association of the InGP synthase-PRA isomerase domains; the G-domain is connected to the InGP synthase-PRA isomerase domain by a relatively disordered region of the peptide chain which, in the alpha 2 beta 2 complex, remains susceptible to proteases; and neither alpha-subunit nor G-domain significantly self-associates.  相似文献   

18.
An altered IGF-I receptor is present in human leukemic cells.   总被引:2,自引:0,他引:2  
We have characterized and analyzed IGF-I- and insulin-stimulated cell growth, receptor binding, and autophosphorylation in the human leukemic cell line HL-60. IGF-I-stimulated cell growth occurred at low (5 ng/ml) and insulin stimulated only at high (500 ng/ml) concentrations. Binding of 125I-IGF-I to partially purified plasma membrane proteins followed the characteristics of IGF-I receptor binding. 125I-IGF-I binding, as determined by chemical cross-linking, occurred to a 145-kDa protein. IGF-I, as well as insulin, stimulated the autophosphorylation of a 105-kDa band (pp105), but we could not detect a 95-kDa band corresponding to the known molecular mass of the IGF-I and insulin receptor beta-subunits. Phosphorylation of pp105 followed the dose-response characteristics of the IGF-I receptor. The phosphorylation of pp105 occurred at tyrosine and threonine, and the pattern of HPLC tryptic peptide maps showed marked differences when compared with that of a phosphorylated insulin receptor beta-subunit. Enzymatic deglycosylation of pp105 resulted only in a slight reduction of the molecular weight. These data suggest that pp105 is the beta-subunit of an IGF-I receptor variant with a higher molecular weight, similar to that found in fetal tissue. The HL-60 cell may acquire, at least in part, malignant growth characteristics through reexpression of the fetal version of the IGF-I receptor.  相似文献   

19.
The dynamics of the internalization of photoaffinity-labelled insulin-receptor complexes was investigated in isolated rat adipocytes by using tryptic proteolysis to probe both the orientation and cellular location of the labelled complexes. In cells that were labelled at 16 degrees C and not prewarmed, 150 micrograms of trypsin/ml rapidly degraded the labelled 125 kDa insulin-receptor subunit into a major proteolytic fragment of 70 kDa and minor amounts of 90- and 50-kDa fragments. With milder trypsin treatment conditions (100 micrograms of trypsin/ml, 15 s at 37 degrees C), the 90 kDa peptide (different from the 90 kDa beta-subunit of the insulin receptor) appeared as a major intermediate proteolytic product, but this species was rapidly and completely converted into the 70- and 50-kDa fragments with continued exposure to trypsin, such that it did not accumulate to appreciable amounts in cells that were not prewarmed before trypsin exposure. By contrast, trypsin treatment of cells prewarmed to 37 degrees C for various times showed that: first, a proportion of the labelled 125 kDa receptors was internalized (became trypsin-insensitive); secondly, the 90 kDa tryptic peptide was formed in large amounts, with proportionate decreases occurring in the amounts of the 70- and 50-kDa tryptic peptides. The increased accumulation of the 90 kDa tryptic peptide from cells preincubated at 37 degrees C, but not at 16 degrees C, indicated that trypsin cleavage sites within the 90 kDa segment of the insulin-receptor alpha-subunit that were exposed at 16 degrees C were made inaccessible by incubation at 37 degrees C, a finding that is consistent with generation of a cryptic domain of the receptor subunit. The tryptic generation of the 90 kDa peptide at 37 degrees C was rapid, becoming half-maximal in 4.4 +/- 0.6 min and maximal in 15-20 min, preceded the intracellular accumulation of labelled receptors (half-maximal in 12.6 +/- 0.7 min and maximal in 30-40 min), was highly correlated with receptor internalization, and was not observed in cultured IM-9 lymphocytes, a cell line in which photolabelled insulin receptors are primarily lost by shedding into the incubation media. These results show that, in adipocytes incubated at 37 degrees C, rapid masking of a previously (at 16 degrees C) accessible domain of the insulin-receptor alpha-subunit occurs and that this dynamic process happens at an early stage in the internalization of insulin-receptor complexes.  相似文献   

20.
In both NIH3T3 cells and HepG2 cells, insulin-like growth factor I (IGF-I) receptors possess two beta-subunits that display different electrophoretic mobilities. Increasing concentrations of IGF-I stimulated the phosphorylation of both beta-subunits to a similar extent, whereas insulin stimulated the phosphorylation of both subunits only at elevated concentrations. Both beta-subunits were immunoprecipitated with p5, an insulin receptor-specific anti-peptide antibody, or with A410, a polyclonal anti-insulin receptor antisera. However, if the tetrameric IGF-I receptor was first dissociated into alpha-beta heterodimers with 1 mM dithiothreitol, only the lower molecular weight beta-subunit was immunoprecipitated. These results suggested that p5 and A410 specifically recognized the lower molecular weight beta-subunit but immunoprecipitated the higher molecular weight beta-subunit because it was present in the same disulfide linked tetramer. Similarly, alpha-IR-3, an antibody specific for the alpha-subunit of the IGF-I receptor, immunoprecipitated both types of beta-subunit from the intact tetramer but only the higher molecular weight beta-subunit from the dissociated heterodimers, suggesting that there are two types of alpha-subunits in the same tetramer and that the alpha-subunit recognized by alpha-IR-3 is only associated with the higher molecular weight beta-subunit. Tryptic phosphopeptide maps of the lower molecular weight beta-subunit of IGF-I receptor were different from the higher molecular weight beta-subunit, but were similar to those of the insulin receptor beta-subunit. Thus, by immunochemical cross-reactivity and structural criteria, the lower molecular weight beta-subunit of the IGF-I receptor was similar to the beta-subunit of insulin receptor. These data suggest that there exists a species of IGF-I receptor that is a hybrid composed of an insulin receptor alpha-beta heterodimer and an IGF-I receptor alpha-beta heterodimer. The existence of such a hybrid receptor could have important functional consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号