首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, the green approach of nanoparticle synthesis by biological entities has been gaining great interest over various other physico-chemical methods, which are laden with many disadvantages. The important challenging issues in current nanotechnology include the development of reliable experimental techniques for the synthesis of nanoparticles of different compositions and sizes along with high monodispersity. Biological systems offer unique promising features to tailor nanomaterials with predefined properties. Fungi are the favorite choice of microorganisms due to the wide variety of advantages they offer over bacteria, yeast, actinomycetes, plants, and other physico-chemical techniques. The use of microorganisms for the deliberate synthesis of nanoparticles is a fairly new and exciting area of research with considerable potential for further development. This review describes an overview of the current green approaches for the synthesis of nanoparticles with particular emphasis on fungi, which are gaining worldwide popularity as nano-factories for the green synthesis of nanoparticles.  相似文献   

2.
The impact of nanotechnology in all areas of science and technology is evident. The expanding availability of a variety of nanostructures with properties in the nanometer size range has sparked widespread interest in their use in biotechnological systems, including the field of environmental remediation. Nanomaterials can be used as catalysts, adsorbents, membranes, water disinfectants and additives to increase catalytic activity and capability due to their high specific surface areas and nanosize effects. Thus, nanomaterials appear promising for new effective environmental technologies. Definitely, nanotechnology applications for site remediation and wastewater treatment are currently in research and development stages, and new innovations are underway. The synthesis of metallic nanoparticles has been intensively developed not only due to its fundamental scientific interest but also for many technological applications. The use of microorganisms in the synthesis of nanoparticles is a relatively new eco-friendly and promising area of research with considerable potential for expansion. On the other hand, chemical synthesis occurs generally under extreme conditions (e.g. pH, temperature) and also chemicals used may have associated environmental and human health impacts. This review is an overview of current research worldwide on the use of microorganisms during the biosynthesis of metallic nanoparticles and their unique properties that make them good candidates for many applications, including in biotechnology.  相似文献   

3.
《Process Biochemistry》2007,42(5):919-923
The development of reliable processes for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Reports on the cell-associated biosynthesis of silver nanoparticles using microorganisms have been published, but these methods of synthesis are rather slow. In this paper, we report on the rapid synthesis of metallic nanoparticles of silver using the reduction of aqueous Ag+ ion using the culture supernatants of Klebsiella pneumonia, Escherichia coli, and Enterobacter cloacae (Enterobacteriacae). The synthetic process was quite fast and silver nanoparticles were formed within 5 min of silver ion coming in contact with the cell filtrate. Through a limited screening process involving a number of common microorganisms, we observed that the culture supernatants of different bacteria from Enterobacteriacae were potential candidates for the rapid synthesis of silver nanoparticles; further, we revealed that this method of synthesis requires far less time than previously published biological methods. Our investigation also showed that piperitone can partially inhibit the reduction of Ag+ to metallic silver nanoparticles by Enterobacteriacae.  相似文献   

4.
基于微生物生物合成纳米颗粒机制的研究进展   总被引:1,自引:0,他引:1  
纳米粒子的合成方法多种多样,包括物理法、化学法和生物合成法,其中生物合成法是以生物为基体的绿色合成方法。由于微生物易于培养、生长快、廉价易得,已成为纳米粒子生物合成法的重要生物类群。微生物和纳米材料的多样性决定了其合成机制的多样化。本文结合国内外的科研报道,着重介绍了目前纳米粒子生物合成机制,并对纳米粒子微生物合成技术未来发展趋势进行了展望。  相似文献   

5.
Nanoparticles, the elementary structures of nanotechnology, are important materials for fundamental studies and variety of applications. The different sizes and shapes of these materials exhibit unique physical and chemical properties than their bulk materials. There is a great interest in obtaining well-dispersed, ultrafine, and uniform nanoparticles to delineate and utilize their distinct properties. Nanoparticle synthesis can be achieved through a wide range of materials utilizing a number of methods including physical, chemical, and biological processes with various precursors from liquids and solids. There is a growing need to prepare environmentally friendly nanoparticles that do not produce toxic wastes in their process synthesis protocol. This kind of synthesis can be achieved by green environment benign processes, which happen to be mostly of a biological nature. Microorganisms are one of the most attractive and simple sources for the synthesis of different types of nanoparticles. This review is an attempt to provide the up-to-date information on current status of nanoparticle synthesis by different types of microorganisms such as fungi, yeast, bacteria, cyanobacteria, actinomycete, and algae. The probable biosynthesis mechanism and conditions for size/shape control are described. Various applications of microbially synthesized nanoparticles are summarized. They include antibacterial, antifungal, anticancer, larvicidal, medical imaging, biosensor, and catalytic applications. Finally, limitations and future prospects for specific research are discussed.  相似文献   

6.
This IRCSET-EMPOWER (Irish Research Council for Science, Engineering and Technology Postdoctoral Research Grant) project aims to improve current methodology for the synthesis of metal nanoparticles (NPs). The development of efficient methodology for metal nanomaterials synthesis is an economical and environmental challenge. While the current methods for NPs synthesis are often energy-intensive and involve toxic chemicals, NPs biosynthesis can be carried on at circumneutral pH and mild temperature, resulting in low cost and environmental impact. Nanomaterial biosynthesis has been already observed in magnetotactic bacteria, diatoms, and S-layer bacteria, however, controlled NPs biosynthesis is a relatively new area of research with considerable potential for development. A thorough understanding of the biochemical mechanism involved in NPs biosynthesis is needed, before biosynthetic methods can be economically competitive. The analysis and identification of active species in the nucleation and growth of metal NPs is a daunting task, due to the complexity of the microbial system. This project work focuses on the controlled biosynthesis of gold NPs by fungal microorganisms and aims to determine the biochemical mechanism involved in nucleation and growth of the particles.  相似文献   

7.
Geranium leaf assisted biosynthesis of silver nanoparticles   总被引:8,自引:0,他引:8  
Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. In this paper, we report on the use of Geranium (Pelargonium graveolens) leaf extract in the extracellular synthesis of silver nanoparticles. On treating aqueous silver nitrate solution with geranium leaf extract, rapid reduction of the silver ions is observed leading to the formation of highly stable, crystalline silver nanoparticles in solution. Transmission electron microscopy analysis of the silver particles indicated that they ranged in size from 16 to 40 nm and were assembled in solution into quasilinear superstructures. The rate of reduction of the silver ions by the geranium leaf extract is faster than that observed by us in an earlier study using a fungus, Fusarium oxysporum, thus highlighting the possibility that nanoparticle biosynthesis methodologies will achieve rates of synthesis comparable to those of chemical methods. This study also represents an important advance in the use of plants over microorganisms in the biosynthesis of metal nanoparticles.  相似文献   

8.
Nanotechnology is relevant to diverse fields of science and technology. Due to the many advantages over non-biological systems, several research groups have exploited the use of biological systems for the synthesis of nanoparticles. Among the different microbes used for the synthesis of nanoparticles, fungi are efficient candidates for fabrication of metal nanoparticles both intra- and extracellulary. The nanoparticles synthesized using fungi present good polydispersity, dimensions and stability. The potential applications of nanotechnology and nanoparticles in different fields have revolutionized the health care, textile and agricultural industries and they are reviewed here.  相似文献   

9.
Biomineralization-inspired preparation of nanoparticles by marine microorganisms is in the limelight of modern nanotechnology. In recent years, the use of marine microorganisms for the synthesis of nanoparticles has been gaining importance due to the simplicity and eco-friendliness of the approach. Here we describe the synthesis of silver nanoparticles using halotolerant Bacillus sp. isolated from the southern coastal waters of India. Our selective and enriched isolation technique resulted in the isolation of a silver nitrate-resistant novel marine Bacillus sp. isolated from sediments collected at Ennore Port, Chennai, India. The strain was characterized by the polyphasic taxonomic approach, and phenotypic and phylogenetic analysis identified the strain as Bacillus sp. VITSSN01. The resistant strain was further assayed for the synthesis of silver nanoparticles and its biological activity evaluated. Nanoparticles were synthesized under optimized nutritional and cultural conditions with shaking and the production continuously monitored. The nanoparticles thus produced were then characterized by atomic force microscopy, X-ray diffraction, Fourier transform-infrared spectrophotometer and transmission electron microscopy. The mean particle size was 46 nm. Hemotological toxicity of nanoparticles is very severe form and less studied. We therefore checked the synthesized silver nanoparticles for toxicity against erythrocytes and found that the silver nanoparticles exhibited moderate hemolytic activity against human erythrocytes, with a half maximal effective concentration (EC50) value of 60 μg/ml. Microscopic studies of the treated erythrocytes showed slight structural perturbations. The results of our study strongly suggest that marine microorganisms could be a potential source for the rapid and eco-friendly synthesis of nanoparticles.  相似文献   

10.
金属型纳米颗粒对植物的生态毒理效应研究进展   总被引:2,自引:0,他引:2  
纳米技术的高速发展和人工纳米颗粒(NPs)的广泛应用带来的潜在环境风险已经引起国内外的广泛关注.金属型纳米颗粒(MB NPs)具有金属毒性和纳米毒性的双重效应,其生物毒性和生态风险已成为纳米毒理学的研究热点之一.植物作为生态系统中的重要组分,是NPs生物累积并进入食物链的潜在途径.本文论述了MB NPs在植物中的吸收、转运和累积过程,总结了MB NPs对植物的毒性效应及其机制,探讨了MB NPs植物毒性的影响因素,综合评述了近年来关于MB NPs对植物特别是农作物的生态毒理效应的研究进展,同时分析了目前研究中存在的问题,对今后的研究方向进行了展望.  相似文献   

11.
The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.  相似文献   

12.

Biofabrication of nanoparticles via the principles of green nanotechnology is a key issue addressed in nanobiotechnology research. There is a growing need for development of a synthesis method for producing biocompatible stable nanoparticles in order to avoid adverse effects in medical applications. We report the use of simple and rapid biosynthesis method for the preparation of gold nanoparticles using Macrophomina phaseolina (Tassi) Goid, a soil-borne pathogen. The effect of pH and temperature on the synthesis of gold nanoparticles by M. phaseolina was also assessed. Different techniques like UV-Visible Spectroscopy, Transmission Electron Microscopy (TEM), Dynamic light scattering (DLS) measurements, Fourier transform infrared (FTIR), and EDX were used to characterize the gold nanoparticles. The movement of these gold nanoparticles inside Escherichia coli (ATCC11103) along with effect on growth and viability was evaluated. The biogenic gold nanoparticle was synthesized at 37 °C temperature and neutral pH. UV-Visible Spectroscopy, TEM, EDX, and DLS measurements confirm the formation of 14 to 16 nm biogenic gold nanoparticles. FTIR substantiates the presence of protein capping on Macrophomina phaseolina-mediated gold nanoparticles. The non-toxicity of gold nanoparticles was confirmed by the growth and viability assay while the TEM images validated the entry of gold nanoparticles without disrupting the structural integrity of E. coli. Biogenic method for the synthesis of nanoparticles using fungi is novel, efficient, without toxic chemicals. These biogenic gold nanoparticles themselves are nontoxic to the microbial cells and offer a better substitute for drug delivery system.

  相似文献   

13.
Recent developments in the biosynthesis of nanomaterials have demonstrated the important role of biological systems and microorganisms in nanoscience and nanotechnology. These organisms show a unique potential in environmentally friendly production and accumulation of nanoparticles with different shapes and sizes. Therefore, researchers in the field of nanoparticle synthesis are focusing their attention to biological systems. In order to obtain different applied chemical compositions, controlled monodispersity, desired morphologies (e.g., amorphous, spherical, needles, crystalline, triangular, and hexagonal), and interested particle size, they have investigated the biological mechanism and enzymatic process of nanoparticle production. In this review, most of these organisms used in nanoparticle synthesis are shown.  相似文献   

14.
With the remarkable development of nanotechnology in recent years, new drug delivery approaches based on the state-of-the-art nanotechnology have been receiving significant attention. Nanoparticles, an evolvement of nanotechnology, are increasingly considered as a potential candidate to carry therapeutic agents safely into a targeted compartment in an organ, particular tissue or cell. These particles are colloidal structures with a diameter smaller than 1,000 nm, and therefore can penetrate through diminutive capillaries into the cell's internal machinery. This innovative delivery technique might be a promising technology to meet the current challenges in drug delivery. When loaded with a gene or drug agent, nanoparticles can become nanopills, which can effectively treat problematical diseases such as cancer. This article summarizes different types of nanoparticles drug delivery systems under investigation and their prospective therapeutic applications. Also, this article presents a closer look at the advances, current challenges, and future direction of nanoparticles drug delivery systems.  相似文献   

15.
抗生素类药物的发现和使用给人类提供了抗击细菌感染的强大武器。但是,抗生素长期使用导致的细菌耐药问题限制了其在临床上的应用。开发新型的基于纳米酶(Nano-Enzyme)的新型抗菌剂为解决上述问题提供了新思路。将纳米酶可以归为两大类:一类是酶和纳米材料的复合材料;另一类是纳米材料本身具有类酶活性。因为银(Ag)纳米粒子是历史最悠久且研究最广泛的纳米抗菌剂,而且其抗菌机制多样化,因此将Ag纳米粒子的抗菌机制和最新进展单独论述。纳米抗菌剂可以组合多种抗菌机制协同抗菌,从而提高其抗菌性能。因此,在这篇综述中系统介绍了Ag纳米粒子和上述2种类型纳米抗菌剂的最新研究进展和抗菌机制,重点介绍了纳米材料的物理性质对抗菌活性和生物安全性的影响。最后,该综述还强调了该领域目前面临的问题和挑战,并对该领域的发展前景进行了展望。  相似文献   

16.
Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.  相似文献   

17.
Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV–visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.  相似文献   

18.
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle–DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle–DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle–DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle–DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology.  相似文献   

19.
With the current rapid development of nanotechnology and synthesis technology for designed oligonucleotides or oligonucleotide-modified nanoparticle conjugates, the combined strategies have become one of the most valuable methods in detection technology for DNA analysis. Using the uniquely recognizable interactions of pre-designed DNA molecules in assembling nanoparticles, various novel approaches have been recently developed towards detecting specific DNA sequences. Here we describe the key fundamentals and issues of this promising strategies ranging from the initial findings of rationally designed DNA-based assembly of nanoparticles to the extended chip-based detection system. Some limitations of these new strategies and possible approaches will be also discussed for the practical application in the area of DNA microarray detection.  相似文献   

20.
Silver nanoparticles are well received in the cosmeceutical industry due to their broad spectrum of pharmacology applications. Research on the therapeutic properties exhibited by silver nanoparticles revealed that the antimicrobial and anti-inflammatory properties are the main attraction in the establishment of nanocosmeceutical products whereby their mechanisms of action are reviewed in this paper. In addition, studies on other uses of silver nanoparticles acknowledged that the particles act as antifungal agents in nail polishes and pigments in coloured beauty products such as lipsticks and eye shadows. Despite the extensive use of silver nanoparticles in the cosmetic line, there are still limited resources on the mechanism of actions and the effect of the particles on the bio-functionality of the body. The safety of silver nanoparticles could be comprehended from their skin penetration ability and toxicity to the human body in which it could be justified that both features are mainly influenced by the morphology of the particles and the method of application. This article summarizes exclusively on the synthesis of silver nanoparticles, the biomedical mechanisms and applications as well the limitations with respect to skin penetration ability and toxicity effects which will contribute significantly to the vast research on the association of nanotechnology and cosmetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号