首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two homologous fungal short-chain dehydrogenase/reductase (SDR) proteins have been cloned from the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus) and expressed in Escherichia coli: trihydroxynaphthalene reductase (3HNR), an enzyme of the melanin biosynthetic pathway that catalyzes the conversion of 1,3,8-trihydroxynaphthalene to vermelone, and 17beta-hydroxysteroid dehydrogenase (17beta-HSDcl), which acts on androgens and estrogens, although its physiological substrate remains to be defined. In the present study, we have compared the structures, specificities to substrates and inhibitors, temperature and pH optima of 3HNR and 17beta-HSDcl. Sequence analysis and homology-built models revealed that these enzymes are highly similar. Both of these enzymes are NADP(H)-preferring reductases and act on steroids at position 17; however, 17beta-HSDcl presented considerably higher initial rates than 3HNR. In vitro, 17beta-HSDcl preferably catalyzed the reduction of 4-estrene-3,17-dione, while the best steroid substrate for 3HNR was 5alpha-androstane-3,17-dione. On the other hand, 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO), an artificial substrate of 3HNR, was oxidized rapidly by 3HNR, while it was not a substrate for 17beta-HSDcl. Additionally, our data show that tricyclazole, a specific inhibitor of 3HNR, is 100-fold less effective for 17beta-HSDcl inhibition, while flavonoids can inhibit both 3HNR and 17beta-HSDcl. We have also examined the effects of temperature and pH on the oxidation of DDBO by 3HNR and the oxidation of 4-estrene-17beta-ol-3-one by 17beta-HSDcl. The apparent optimal temperature for 3HNR activity was between 25 and 30 degrees C, while it was between 40 and 45 degrees C for 17beta-HSDcl activity. The pH optimum of 3HNR activity was between 8 and 9, and for 17beta-HSDcl, between 7 and 8. Our data show that in spite of high homology and similar backbone structure, differences between 3HNR and 17beta-HSDcl were not only in substrate specificities, but also in temperature and pH optima.  相似文献   

2.
3.
Bacterial β-ketoacyl-ACP reductase (FabG) and the β-ketoacyl reductase domain in mammalian fatty acid synthase (FAS) have the same function and both are rendered as the novel targets for drugs. Herein we developed a convenient method, using an available compound ethyl acetoacetate (EAA) as the substitutive substrate, to measure their activities by monitoring decrease of NADPH absorbance at 340 nm. In addition to the result, ethyl 3-hydroxybutyrate (EHB) was detected by HPLC analysis in the reaction system, indicating that EAA worked effectively as the substrate of FabG and FAS since its β-keto group was reduced. Then, the detailed kinetic characteristics, such as optimal ionic strength, pH value and temperature, and kinetic parameters, for FabG and FAS with this substitutive substrate were determined. The Km and kcat values of FabG obtained for EAA were 127 mM and 0.30 s− 1, while those of this enzyme for NADPH were 10.0 μM and 0.59 s− 1, respectively. The corresponding Km and kcat values of FAS were 126 mM and 4.63 s− 1 for EAA; 8.7 μM and 4.09 s− 1 for NADPH. Additionally, the inhibitory kinetics of FabG and FAS, by a known inhibitor EGCG, was also studied.  相似文献   

4.
Chen C  Kim HL  Zhuang N  Seo KH  Park KH  Han CD  Park YS  Lee KH 《FEBS letters》2011,585(17):2640-2646
Up to now, d-threo-tetrahydrobiopterin (DH4, dictyopterin) was detected only in Dictyostelium discoideum, while the isomer l-erythro-tetrahydrobioterin (BH4) is common in mammals. To elucidate the mechanism of DH4 regeneration by D. discoideum dihydropteridine reductase (DicDHPR), we have determined the crystal structure of DicDHPR complexed with NAD+ at 2.16 Å resolution. Significant structural differences from mammalian DHPRs are found around the coenzyme binding site, resulting in a higher Km value for NADH (Km = 46.51 ± 0.4 μM) than mammals. In addition, we have found that rat DHPR as well as DicDHPR could bind to both substrates quinonoid-BH2 and quinonoid-DH2 by docking calculations and have confirmed their catalytic activity by in vitro assay.Structured summary of protein interactionsDHPR binds to DHPR by X-ray crystallography (View interaction)  相似文献   

5.
We have purified and examined the substrate specificity of four lipases from two strains of the mould Geotrichum candidum, ATCC 34614 and CMICC 335426. We have designated the lipases I and II (ATCC 34614), and A and B (CMICC 335426). The enzymes are monomeric and have similar molecular masses and pI. Thus, lipases I and II have native molecular masses of 50.1 kDa and 55.5 kDa, and pI of 4.61 and 4.47, respectively. Lipases A and B are very similar to lipases I and II with native molecular masses of 53.7 kDa and 48.9 kDa, and pI of 4.71 and 4.50, respectively. Treatment with endo-beta-N-acetylglucosaminidase caused a reduction in molecular mass of approximately 4.5 kDa for all four lipases, indicating that these enzymes are glycosylated. Western blotting shows that the lipases are related. However, lipase B from CMICC 335426 shows a remarkable specificity for unsaturated substrates with a double bond at position 9 (cis configuration), and this specificity is not exhibited by the other three lipases. No lipase of this unique specificity has previously been purified to homogeneity. Structural studies using these four lipases should allow insight into the molecular basis of this remarkable specificity.  相似文献   

6.
Chromatography of soluble proteins from rat heart on phosphocellulose columns separates two 5'-nucleotidases. The first to emerge from the column shows a preference for AMP over IMP as substrate, whereas the second shows a preference for IMP over AMP. The properties of the IMP-preferring enzyme, including the conditions under which it is eluted from phosphocellulose columns, show it to be the enzyme studied by Itoh, Oka & Ozasa [Biochem. J. (1986) 235, 847-851]. The kinetic properties of the AMP-preferring enzyme indicate that it is likely to be the enzyme responsible for the production of adenosine under conditions of hypoxia and increased work load, and with metabolic stresses such as a high load of acetate.  相似文献   

7.
The de novo synthesis of fatty acids occurs in two distinct cellular compartments. Palmitate (16:0) is synthesized from acetyl-CoA and malonyl-CoA in the cytoplasm by the enzymes acetyl-CoA carboxylase 1 and fatty acid synthase. The synthesis of fatty acids longer than 16 carbons takes place in microsomes and utilizes malonyl-CoA as the carbon source. Each two-carbon addition requires four sequential reactions: condensation, reduction, dehydration, and a final reduction to form the elongated fatty acyl-CoA. The initial condensation reaction is the regulated and rate-controlling step in microsomal fatty acyl elongation. We previously reported the cDNA cloning and characterization of a murine long chain fatty acyl elongase (LCE) . Overexpression of LCE in cells resulted in the enhanced addition of two-carbon units to C12-C16 fatty acids, and evidence was provided that LCE catalyzed the initial condensation reaction of long chain fatty acid elongation. The remaining three enzymes in the elongation reaction have not been identified in mammals. Here, we report the identification and characterization of two mammalian enzymes that catalyze the 3-ketoacyl-CoA and trans-2,3-enoyl-CoA reduction reactions in long and very long chain fatty acid elongation, respectively.  相似文献   

8.
Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes.  相似文献   

9.
10.
Two short chain dehydrogenase/reductases mediate naphthol reduction reactions in fungal melanin biosynthesis. An X-ray structure of 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) complexed with NADPH and pyroquilon was determined for examining substrate and inhibitor specificities that differ from those of 1,3,8-trihydroxynaphthalene reductase (3HNR). The 1.5 A resolution structure allows for comparisons with the 1.7 A resolution structure of 3HNR complexed with the same ligands. The sequences of the two proteins are 46% identical, and they have the same fold. The 30-fold lower affinity of the 4HNR-NADPH complex for pyroquilon (a commercial fungicide that targets 3HNR) in comparison to that of the 3HNR-NADPH complex can be explained by unfavorable interactions between the anionic carboxyl group of the C-terminal Ile282 of 4HNR and CH and CH(2) groups of the inhibitor that are countered by favorable inhibitor interactions with 3HNR. 1,3,8-Trihydroxynaphthalene (3HN) and 1,3,6,8-tetrahydroxynaphthalene (4HN) were modeled onto the cyclic structure of pyroquilon in the 4HNR-NADPH-pyroquilon complex to examine the 300-fold preference of the enzyme for 4HN over 3HN. The models suggest that the C-terminal carboxyl group of Ile282 has a favorable hydrogen bonding interaction with the C6 hydroxyl group of 4HN and an unfavorable interaction with the C6 CH group of 3HN. Models of 3HN and 4HN in the 3HNR active site suggest a favorable interaction of the sulfur atom of the C-terminal Met283 with the C6 CH group of 3HN and an unfavorable one with the C6 hydroxyl group of 4HN, accounting for the 4-fold difference in substrate specificities. Thus, the C-terminal residues of the two naphthol reductase are determinants of inhibitor and substrate specificities.  相似文献   

11.
Two endo-beta-N-acetylglucosaminidases (PI and PII) have been isolated from the culture fluid of Pseudomonas sp. The substrate specificity of the PI enzyme was very similar to that of Endo-H from Streptomyces plicatus. On the contrary, the PII enzyme had a novel substrate specificity that degraded both high-mannose type and hybrid type oligosaccharides derived from ovalbumin, and the core structure of complex type oligosaccharides derived from human transferrin and porcine pancreatic lipase.  相似文献   

12.
Trichomonas fetus, a protozoon belonging to the class of flagellates causes vaginal infections in cows, leading to sterility or abortion in early stage of pregnancy. Two neuraminidases were isolated from the culture medium and purified by various procedures of gel chromatography, ion exchange chromatography, and by affinity chromatography on N-(4-nitrophenyl)-oxamic acid-Sepharose 4B. The molecular weights of the two neuraminidases were determined as 320 000 (enzyme I) and 38 000 (enzyme II) respectively. However, enzyme I seems to consist of two isoenzymes containing four subunits of almost equal molecular weight. The pH optima of both enzymes depend on the substrates and range from pH 4.7 to 5.5. Due to the type of substrate, the Michaelis constants (Km) vary between 5.0 x 10(-2)M and 6.6 x 10(-3)M for enzyme I and between 1.4 x 10(-2)M and 4.9 x 10(-3)M for enzyme II. Among the different groups of NeuAc-containing substrates, i.e. glycoproteins, glycolipids, oligosaccharides and synthetic ketosides, enzyme I preferably cleaves high molecular weight glycoprotein type substrates whereas enzyme II shows higher affinities to low-molecular weight oligosaccharides. The ganglioside II3NeuAcGgOse4Cer is susceptible to both enzymes only after removal of the lipophilic ceramide residue. Both enzymes show differences in the specificity towards alpha 2 leads 3 to 3, alpha 2 leads to 6, and alpha 2 leads to 8 glycosidic linkages of NeuAc. Taking the rate of cleavage of the alpha 2 leads to linkage in II3NeuAc-Lac as 100, enzyme I reveals 65 for the alpha 2 leads to 6 linkage in II6NeuAc-Lac, and 15 for the alpha 2 leads to 8 linkage in II3(comes from 2 alpha NeuAc8)2-Lac, whereas enzyme II exhibits values around 50 for both the alpha 2 leads to 6- and the alpha 2 leads to 8-linked substrates. The activity of neuraminidase I and II is not influenced by Ca2 but is inhibited by Cu2, Hg2, ann 4-hydroxymercurisulfonic acid. The inhibition by Hg2 and by the latter is reversible with enzyme I by addition of dithioerythritol.  相似文献   

13.
ADP-ribose (ADPR) is one of the main substrates of Nudix proteins. Among the eight Nudix proteins of Thermus thermophilus HB8, we previously determined the crystal structure of Ndx4, an ADPR pyrophosphatase (ADPRase). In this study we show that Ndx2 of T. thermophilus also preferentially hydrolyzes ADPR and flavin adenine dinucleotide and have determined its crystal structure. We have determined the structures of Ndx2 alone and in complex with Mg2+, with Mg2+ and AMP, and with Mg2+ and a nonhydrolyzable ADPR analogue. Although Ndx2 recognizes the AMP moiety in a manner similar to those for other ADPRases, it recognizes the terminal ribose in a distinct manner. The residues responsible for the recognition of the substrate in Ndx2 are not conserved among ADPRases. This may reflect the diversity in substrate specificity among ADPRases. Based on these results, we propose the classification of ADPRases into two types: ADPRase-I enzymes, which exhibit high specificity for ADPR; and ADPRase-II enzymes, which exhibit low specificity for ADPR. In the active site of the ternary complexes, three Mg2+ ions are coordinated to the side chains of conserved glutamate residues and water molecules. Substitution of Glu90 and Glu94 with glutamine suggests that these residues are essential for catalysis. These results suggest that ADPRase-I and ADPRase-II enzymes have nearly identical catalytic mechanisms but different mechanisms of substrate recognition.  相似文献   

14.
15.
A putative Type II NADH dehydrogenase from Halobacillus dabanensis was recently reported to have Na+/H+ antiport activity (and called Nap), raising the possibility of direct coupling of respiration to antiport-dependent pH homeostasis. This study characterized a homologous type II NADH dehydrogenase of genetically tractable alkaliphilic Bacillus pseudofirmus OF4, in which evidence supports antiport-based pH homeostasis that is mediated entirely by secondary antiport. Two candidate type II NADH dehydrogenase genes with canonical GXGXXG motifs were identified in a draft genome sequence of B. pseudofirmus OF4. The gene product designated NDH-2A exhibited homology to enzymes from Bacillus subtilis and Escherichia coli whereas NDH-2B exhibited homology to the H. dabanensis Nap protein and its alkaliphilic Bacillus halodurans C-125 homologue. The ndh-2A, but not the ndh-2B, gene complemented the growth defect of an NADH dehydrogenase-deficient E. coli mutant. Neither gene conferred Na+-resistance on an antiporter-deficient E. coli strain, nor did they confer Na+/H+ antiport activity in vesicle assays. The purified hexa-histidine-tagged gene products were approximately 50 kDa, contained noncovalently bound FAD and oxidized NADH. They were predominantly cytoplasmic in E. coli, consonant with the absence of antiport activity. The catalytic properties of NDH-2A were more consistent with a major respiratory role than those of NDH-2B.  相似文献   

16.
Summary The effect of Triton X-100 on the activities of acid phosphatases from wheat germ, potato and human prostate was tested using -glycerophosphate, p-nitro-phenyl phosphate and naphthol AS BI phosphate as substrates. There was little effect on -glycerophosphatase activity at the concentrations of Triton X-100 tested. However at low concen trations of the detergent there was a stimulation of the activities of p-nitrophenyl phosphatase and naphthol phosphatase which were inhibited with the higher concentrations. Triton X-100 was found to enhance colour production between naphthol AS BI and fast red violet LB.Further evidence is presented confirming the presence of more than one acid phosphatase from each of the sources employed.  相似文献   

17.
The relative substrate specificities of glucose dehydrogenases (E.C. 1.1.1.47) from beef liver and rat liver are very different. The beef enzyme oxidizes glucose more rapidly than either glucose-6-phosphate or galactose-6-phosphate. On the other hand, the dehydrogenase from rat liver prefers the hexose phosphates to glucose.A procedure for estimating the level of glucose dehydrogenase in rat and beef liver is described. The glucose-6-phosphate dehydrogenase activity attributed to glucose dehydrogenases is estimated to be about one-fifth and one-third that of cytoplasmic glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) in female and male rat liver respectively.A fluorometric adaptation of the less sensitive spectrophotometric assay for glucose dehydrogenase is described.  相似文献   

18.
N-acetylglucosaminyltransferase (GnT)-IV catalyzes the formation of the GlcNAcβ1-4 branch on the GlcNAcβ1-2Manα1-3 arm of the core structure of N-glycans. Two human GnT-IV isozymes (GnT-IVa and GnT-IVb) had been identified, which exhibit different expression profiles among human tissues and cancer cell lines. To clarify the enzymatic properties of the respective enzymes, their kinetic parameters were determined using recombinant full-length enzymes expressed in COS7 cells. The K m of human GnT-IVb for UDP-GlcNAc was estimated to be 0.24 mM, which is 2-fold higher than that of human GnT-IVa. The K m values of GnT-IVb for pyridylaminated (PA) acceptor sugar chains with different branch numbers were 3- to 6-fold higher than those of GnT-IVa. To compare substrate specificities more precisely, we generated recombinant soluble enzymes of human GnT-IVa and GnT-IVb with N-terminal flag tags. Both enzymes showed similar substrate specificities as determined using fourteen PA-sugar chains. They preferred complex-type N-glycans over hybrid-types. Among the complex-type N-glycans tested, the relative activities of both enzymes were increased in proportion to the number of GlcNAc branches on the Man α1-6 arm. The Man α1-6 arm of the acceptors was not essential for their activities because a linear pentasaccharide lacking this arm, GlcNAcβ1-2Manα1-3Manβ1-4GlcNAcβ1-4 GlcNAc-PA, was a substrate for both enzymes. These results indicate that human GnT-IVb exhibits the same acceptor substrate specificities as human GnT-IVa, although GnT-IVb has lower affinities for donors or acceptors than GnT-IVa. This suggests that GnT-IVa is more active than GnT-IVb under physiological conditions and that it primarily contributes to the biosynthesis of N-glycans.  相似文献   

19.
The fatty acid synthase (FAS) from Brevibacterium ammoniagenes is a homohexameric multienzyme complex that catalyzes the synthesis of both saturated and unsaturated fatty acids. By immunological screening of a B. ammoniagenes expression library, an fas DNA fragment was isolated and subsequently used to clone the entire gene together with its flanking sequences. Within 10,525 bp of sequenced DNA, the 9,189-bp FAS coding region was identified, corresponding to a protein of 3,063 amino acids with a molecular mass of 324,910 Da. This gene (fasA) encodes, at its 5' end, the same amino acid sequence as is observed with purified B. ammoniagenes FAS. A second reading frame encoding another B. ammoniagenes FAS variant (FasB) had been identified previously. Both sequences are colinear and exhibit 61 and 47% identity at the DNA and protein levels, respectively. By using specific antibodies raised against a unique peptide sequence of FasB, this enzyme was shown to represent only 5 to 10% of the cellular FAS protein. Insertional inactivation of the FasB coding sequence causes no defective phenotype, while fasA disruptants require oleic acid for growth. Correspondingly, oleate-dependent B. ammoniagenes cells obtained by ethyl methanesulfonate mutagenesis were complemented by transformation with fasA DNA but not with fasB DNA. The data indicate that B. ammoniagenes contains two related though differently expressed type I FASs. FasA represents the bulk of cellular FAS protein and catalyzes the synthesis of both saturated and unsaturated fatty acids, while the minor variant, FasB, cannot catalyze the synthesis of oleic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号