首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of 2-chloroethanol by Pseudomonas putida US 2 was investigated in shaking flasks, air-bubble columns and packed-bed fermenters by free cells, calcium-alginate-entrapped cells and on cells on granular clay adsorbed. Entrapped cells tolerated increasing concentrations of 2-chloroethanol better than free cells. Their maximum degradative activity could be observed at 34°C and pH 7.0. The degradation of 2-chloroethanol leads to a decrease of pH and to a stagnation of mineralization, particularly with free or entrapped cells. Following the stabilization of pH, supplementation with succinate resulted in a complete degradation of higher 2-chloroethanol concentrations. Less 2-chloroethanol was degraded in air-bubble columns and larger amounts in packed-bed fermenters. 2-Chloroethanol was mineralized faster by free or entrapped P. putida US 2 than by adsorbed cells, which, on the other hand, were able to remove higher concentrations of the compound. The results with P. putida US 2 are a good indication that this microorganism could be used in waste-water treatment and soil-decontamination systems.  相似文献   

2.
A strain of Pseudomonas putida was isolated that was able to degrade 2-chloroethanol. The degradation proceeded via 2-chloroacetaldehyde and chloroacetate to glycolate. In crude extracts the enzymes for this degradation pathway could be detected. All enzymes proved to be inducible. The dehalogenase that catalyzed the dehalogenation of chloroacetate to glycolate was further characterized. It consisted of a single polypeptide chain with a molecular mass of 28 kDa. After induction the dehalogenase was expressed at a high level. In a mutant resistant to high concentrations of 2-chloroethanol the dehalogenase was no longer expressed. The mechanism of resistance seemed to be due to the inability to convert chloroacetate and export of this compound out of the cell.Non-standard abbreviations CEO 2-chloroethanol - DCPIP 2,6-dichlorophenolindophenol - FPLC fast protein liquid chromatography - PAGE polyacrylamide gelelectrophoresis - PES phenazine ethosulfate - PMS phenazine methosulfate - PQQ pyrroloquinoline quinone  相似文献   

3.
Trimethyl-1,2-dihydroxypropyl-ammonium (TM) originates from the hydrolysis of the parent esterquat surfactant, which is widely used as softener in fabric care. Based on test procedures mimicking complex biological systems, TM is supposed to degrade completely when reaching the environment. However, no organisms able to degrade TM were isolated nor has the degradation pathway been elucidated so far. We isolated a Gram-negative rod able to grow with TM as sole source of carbon, energy and nitrogen. The strain reached a maximum specific growth rate of 0.4 h–1 when growing with TM as the sole source of carbon, energy and nitrogen. TM was degraded to completion and surplus nitrogen was excreted as ammonium into the growth medium. A high percentage of the carbon in TM (68% in continuous culture and 60% in batch culture) was combusted to CO2 resulting in a low yield of 0.54 mg cell dry weight per mg carbon during continuous cultivation and 0.73 mg cell dry weight per mg carbon in batch cultures. Choline, a natural structurally related compound, served as a growth substrate, whereas a couple of similar other quaternary aminoalcohols also used in softeners did not. The isolated bacterium was identified by 16S-rDNA sequencing as a strain of Pseudomonas putida with a difference of only one base pair to P. putida DSM 291T. Despite their high identity, the reference strain P. putida DSM 291T was not able to grow with TM and the two strains differed even in shape when growing on the same medium. This is the first microbial isolate able to degrade a quaternary ammonium softener head group to completion. Previously described strains growing on quaternary ammonium surfactants (decyltrimethylammonium, hexadecyltrimethylammonium and didecyldimethylammonium) either excreted metabolites or a consortium of bacteria was required for complete degradation.  相似文献   

4.
Xanthobacter autotrophicus GJ10 was applied in a packed-bed fermentor to degrade dichloroacetic acid (DCA) in batch-, semicontinuous and continuous culture. Degradation has been studied with freely suspended and adsorptive immobilized cells. To imitate natural soil systems, the fermentor was filled with sand. Concentrations of up to 20 mm DCA were degraded completely. If higher initial concentrations were used, the decrease in pH value inhibited further growth and degradation. In continuous culture the fermentor was inoculated additionally with activated sludge. Over a period of 2 weeks the specialized strain could be retained and no decrease in metabolic activity was observed. A decrease in degradation of DCA was observed when succinate was added as a second substrate. The haloacid dehalogenase was found to be induced by DCA. Non-induced cells showed typical repression of catabolites and diauxic growth with succinate as co-substrate. The results demonstrate that X. autotrophicus GJ10 might be suitable for applications in biological waste treatment systems. Correspondence to: H.-J. Rehm  相似文献   

5.
The pathway of 2-chloroethanol degradation in the denitrifying Pseudomonas stutzeri strain JJ was investigated. In cell-free extracts, activities of a phenazine methosulfate (PMS)-dependent chloroethanol dehydrogenase, an NAD-dependent chloroacetaldehyde dehydrogenase, and a chloroacetate dehalogenase were detected. This suggested that the 2-chloroethanol degradation pathway in this denitrifying strain is the same as found in aerobic bacteria that degrade chloroethanol. Activity towards primary alcohols, secondary alcohols, diols, and other chlorinated alcohols could be measured in cell-free extracts with chloroethanol dehydrogenase (CE-DH) activity. PMS and phenazine ethosulfate (PES) were used as primary electron acceptors, but not NAD, NADP or ferricyanide. Cells of strain JJ cultured in a continuous culture under nitrate limitation exhibited chloroethanol dehydrogenase activity that was a 12 times higher than in cells grown in batch culture. However, under chloroethanol-limiting conditions, CE-DH activity was in the same range as in batch culture. Cells grown on ethanol did not exhibit CE-DH activity. Instead, NAD-dependent ethanol dehydrogenase (E-DH) activity and PMS-dependent E-DH activity were detected.  相似文献   

6.
The regulation of benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate was investigated in batch and continuous culture. In batch culture, R. pickettii PKO1 achieved a maximum specific growth rate with benzene of 0.18 h−1, while succinate allowed much faster growth (μmax = 0.5 h−1). Under carbon excess conditions succinate repressed benzene consumption resulting in diauxic growth whereas under carbon-limited conditions in the chemostat both substrates were used simultaneously. Moreover, the effect of succinate on the adaptation towards growth with benzene was investigated in carbon-limited continuous culture at a dilution rate of 0.1 h−1 by changing the inflowing carbon substrate from succinate to different mixtures of benzene and succinate. The adaptation process towards utilisation of benzene was rather complex. Three to seven hours after the medium shift biomass production from benzene started. Higher proportions of succinate in the mixture had a positive effect on both the onset of biomass production and on the time required for induction of benzene utilisation. Strikingly, after the initial increase in biomass and benzene-catabolising activities, the culture collapsed regularly and wash-out of biomass was observed. After a transient phase of low biomass concentrations growth on benzene resumed so that finally rather stable and high biomass concentrations were reached. The decrease in biomass and degradative activities cannot be explained so far, but the possibilities of either intoxication of the cells by benzene itself, or of inhibition by degradation intermediates were ruled out.  相似文献   

7.
Physiological stress associated with toluene exposure in batch cultures of Pseudomonas putida 54G was investigated. P. putida 54G cells were grown using a continuous vapor phase feed stream containing 150 ppmv or 750 ppmv toluene as the sole carbon and energy source. Cells were enumerated on non-selective (R2A agar plates) and a selective minimal medium incubated in the presence of vapor phase toluene (HCMM2). Differential recovery on the two media was used to evaluate bacterial stress, culturability and loss of toluene-degrading capability. A majority of the bacteria were reversibly stressed and could resume active colony formation on selective medium after passage on non-selective medium. A small fraction of the bacterial cells suffered an irreversible loss of toluene degradation capability and were designated as Tol variants. Numbers of stressed organisms increased with duration of toluene exposure and toluene concentration and coincided with accumulation of metabolic intermediates from incomplete toluene degradation. Respiring cell numbers in the batch cultures decreased as injury increased, indicating a possible relationship between respiring and injured cells. Rate expressions for injury, for formation of Tol variants and for growth of Tol variants were determined by calibrating a theoretical model to the results obtained. These rate expressions can be used to calibrate bioreactor models, and provide a basis for better design and control of bioremediation systems. Received 01 July 1996/ Accepted in revised form 25 March 1997  相似文献   

8.
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIANtr participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate.  相似文献   

9.
Pseudomonas putida E41 was isolated from oil-contaminated soil and showed its ability to grow on ethyl-benzene as the sole carbon and energy source. Moreover, P. putida E41 show the activity of biodegradation of ethylbenzene in the batch culture. E41 showed high efficiency of biodegradation of ethylbenzene with the optimum conditions (a cell concentration of 0.1 g wet cell weight/L, pH 7.0, 25°C, and ethylbenzene concentration of 50 mg/L) from the results of the batch culture. The maximum degradation rate and specific growth rate (μmax) under the optimum conditions were 0.19+0.03 mg/mg-DCW (Dry Cell Weight)/h and 0.87+0.13 h−1, respectively. Benzene, toluene and ethylbenzene were degraded when these compounds were provided together; however, xylene isomers persisted during degradation by P. putida E41. When using a bioreactor batch system with a binary culture with P. putida BJ10, which was isolated previously in our lab, the degradation rate for benzene and toluene was improved in BTE mixed medium (each initial concentration: 50 mg/L). Almost all of the BTE was degraded within 4 h and 70–80% of m-, p-, and o-xylenes within 11 h in a BTEX mixture (initial concentration: 50 mg/L each). In summary, we found a valuable new strain of P. putida, determined the optimal degradation conditions for this isolate and tested a mixed culture of E41 and BJ10 for its ability to degrade a common sample of mixed contaminants containing benzene, toluene, and xylene.  相似文献   

10.
Growth characteristics of batch and continuous cultures of the pink facultative methylotrophMethylobacterium sp. MB1 were determined. The response of a chemostat culture to a pulse increase of methanol concentration was studied. Malate, succinate and oxaloacetate additions to the methanol-supplemented medium decreased batch culture growth inhibition by methanol. The carotenoid content in cells grown in a chemostat decreased with increasing growth rate. The key enzyme activities of C1-metabolism were measured in a chemostat culture at different dilution rates.  相似文献   

11.
Summary A defined mixed culture of the yeast Cryptococcus elinovii H1 and the bacterium Pseudomonas putida P8 was immobilized by adsorption on activated carbon and sintered glass, respectively. Depending on its adsorption capacity for phenol the activated carbon system could completely degrade 17 g/l in batch culture, whereas the sintered glass system was able to degrade phenol up to 4 g/l. During semicontinuous degradation of phenol (1 g/l) both systems reached constant degradation times with the fourth batch that lasted 8 h when using the activated carbon system and 10 h in the sintered glass system. In the course of continuous degradation of phenol the activated carbon system reached a maximum degradation rate of 9.2 g l–1 day–1 compared to 6.4 g l–1 day–1degraded by the sintered glass system. 2-Hydroxymuconic acid semialdehyde could be identified and quantitatively determined as a metabolite of phenol degradation by P. putida P8. Increased membrane permeability under the influence of phenol was demonstrated by the examination of K+ efflux from P. putida P8. Offprint requests to: H.-J. Rehm  相似文献   

12.
Chemostat cultures of Methylobacterium extorquens AM1 grown on methanol or succinate at a range of dilution rates were compared to batch cultures in terms of enzyme levels, poly-β-hydroxybutyrate content, and intracellular concentrations of adenine and pyridine nucleotides. In both chemostat and batch cultures, enzymes specific to C1 metabolism were up-regulated during growth on methanol and down-regulated during growth on succinate, polyhydroxybutyrate levels were higher on succinate, intracellular ATP levels and the energy charge were higher during growth on methanol, while the pools of reducing equivalents were higher during growth on succinate. For most of the tested parameters, little alteration occurred in response to growth rate. Overall, we conclude that the chemostat cultivation conditions developed in this study roughly mimic the growth in batch cultures, but provide a better control over the culturing conditions and a better data reproducibility, which are important for integrative functional studies. This study provides baseline data for future work using chemostat cultures, defining key similarities and differences in the physiology compared to existing batch culture data.  相似文献   

13.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

14.
Alcaligenes eutrophus was grown in batch cultures using either phenol as a sole substrate or mixtures of phenol and 4-chlorophenol. Phenol was found to be the sole source for carbon and energy while 4-chlorophenol was utilized only as a cometabolite. Maximum growth rates on phenol reached only 0.26 h-1, significantly below the growth rates reported earlier with Pseudomonas putida. The cometabolite was found to decrease biomass yield and increase lag time before logarithmic growth occurred. Both phenol and 4-chlorophenol were found to inhibit the growth rate linearly with maximum concentrations of 1080 ppm and 69 ppm respectively, beyond which no growth occurred. The best-fit parameters are incorporated into a simple, dynamic (i.e. time-varying) model capable of predicting all the batch growth conditions presented here. It is shown that P. putida is capable of faster bioremediation when phenol is the sole carbon source or for mixed substrates with low concentrations of the cometabolite, but for high concentrations of 4-chlorophenol, A. eutrophus becomes superior because of the long lag times that occur in the Pseudomonas species. Received: 25 January 1996/Received revision: 13 March 1996/Accepted: 15 April 1996  相似文献   

15.
Enterobacter cloacae was originally isolated from soil irrigated with wastewater on the basis of its ability to grow with linear alkylbenzene sulfonate (LAS) as the sole source for carbon and energy. The isolated bacterium was grown in batch cultures using a 2-chlorobenzoic acid (2-CBA)-containing minimal salt medium (MSM). 2-CBA was found to be the sole source for carbon and energy. 2-CBA inhibited the growth rate with a maximum concentration of 10 mM, after which no growth occurred. The Haldane model was used to predict the specific growth rate concentration data. 2-CBA degradation by starved E. cloaca cells was faster than that of nonstarved cells. The maximum growth rates on 2-CBA (2 mM) for starved and nonstarved cells reached only 0.34 and 0.28 h?1, respectively. Glucose, lactose, sucrose, maltose, succinic acid, and mannitol as additional carbon sources at a fixed concentration (0.2%) caused the degradation rate of 2-CBA to proceed faster at ranges between 1.08- and 1.5-fold higher than that of the control. In contrast, using only fructose and sorbitol as the carbon sources showed catabolic repression of the degradation activity of 2-CBA by E. cloaca cells, although their cell mass was improved. All nitrogen sources supplied caused an increase in cell mass, whereas only lysine, alanine, glutamine, casein, and yeast extract caused a decrease in the degradation rate of 2-CBA, with a range between 12% and 28%. The activity of C120 could be detected in a crude extract of E. cloacae cells, indicating that the chloroaromatic ring fission occurs through the ortho pathways, not through the meta pathways. The data showed that different initial cell (inocula) densities did not affect the induction time for 2-CBA degradation. However, doubling the initial cell densities reduced the time required for reaching the complete degradation. 2-CBA degradation was optimally achieved at a 37°C incubation temperature and a pH of 7.5.  相似文献   

16.
Arthrobacter sp. strain G1 is able to grow on 4-fluorocinnamic acid (4-FCA) as sole carbon source. The organism converts 4-FCA into 4-fluorobenzoic acid (4-FBA) and utilizes the two-carbon side-chain for growth with some formation of 4-fluoroacetophenone as a dead-end side product. We also have isolated Ralstonia sp. strain H1, an organism that degrades 4-FBA. A consortium of strains G1 and H1 degraded 4-FCA with Monod kinetics during growth in batch and continuous cultures. Specific growth rates of strain G1 and specific degradation rates of 4-FCA were observed to follow substrate inhibition kinetics, which could be modeled using the kinetic models of Haldane–Andrew and Luong–Levenspiel. The mixed culture showed complete mineralization of 4-FCA with quantitative release of fluoride, both in batch and continuous cultures. Steady-state chemostat cultures that were exposed to shock loadings of substrate responded with rapid degradation and returned to steady-state in 10–15 h, indicating that the mixed culture provided a robust system for continuous 4-FCA degradation.  相似文献   

17.
Summary The biodegradation of the three isomeric monochlorophenols 2-(2CP), 3- (3CP) and 4-chlorophenol (4CP) and phenol by the constructed strain Alcaligenes sp. A7-2 was investigated. Mineralization took place in the order: phenol >4CP >2CP >3CP, whereas 3CP was mineralized only co-metabolically. In substrate mixtures with phenol, degradation of 4CP was decelerated but degradation of 2CP was accelerated. Free cells in batch culture showed biphasic growth with an equimolar mixture of 2CP and 4CP as substrates, perhaps due to diauxie. Degradation patterns obtained with free cells in batch culture were confirmed with immobilized cells in continuous culture. Immobilized cells of Alcaligenes sp. A7-2 built up a biofilm on the lava that was used as filling material in the packed-bed reactors. The continuous cultures remained stable despite increasing input rates of chlorophenol and phenol mixtures up to 1.16 mMo1.1–1.h–1 for several weeks. Correspondence to: H.-J. Rehm  相似文献   

18.
Summary Pseudomonas putida CP1 grew on 2-chlorophenol when supplied as the sole source of carbon. Chlorophenol degradation was stimulated in the presence of low concentrations of glucose (0.05–1%, w/v). Substrate removal was inhibited and there was a significant fall in pH with concentrations of glucose greater than 1.0% (w/v). When the pH was controlled at pH 7.0 inhibition of substrate removal was alleviated. The rate of removal of 2-chlorophenol was greater in the presence of fructose than in the presence of glucose. P. putida CP1 formed clumps of cells when grown on 2-chlorophenol and fructose but not on glucose. When the organism was grown on a combination of 2-chlorophenol and an additional carbon source clumping was present but to a lesser degree.  相似文献   

19.
Summary Continuous and batch cultures of Lactobacillus helveticus operated under different conditions were studied with respect to the limitation of growth and lactic acid production by increasing undissociated lactic acid and hydrogen ion concentrations, respectively. In a single-stage continuous culture without pH control a final pH of 3.8 and 65 mm undissociated lactic acid was obtained. In two-stage continuous cultures provided with different growth media and run at different pH values, 65–70 mm free acid was obtained in the second stage. Further batch-culture experiments showed growth limitation at 60–70 mm lactic acid. After growth ceased, production of lactate continued until a lactic acid concentration of about 100 mm was reached; obviously an uncoupling of growth and acid production had occurred. Examining the effect of different concentrations of either lactic acid or hydrochloric acid, added to growing batch cultures of L. helveticus, it was shown that the undissociated lactic acid concentration was responsible for growth limitation and lactic acid production in this organism, whereas the pH value had only an indirect effect.  相似文献   

20.
When Azorhizobium caulinodans was grown in chemostat cultures with N2 as the N source at a constant dilution rate of 0.1 h-1 in media with a constant concentration (50 mM) of succinate and variable concentrations (1.5 to 585 microM) of nicotinate, neither the growth yield on succinate, the specific rate of O2 consumption, nor the specific rate of CO2 production showed linear regression with the concentration of nicotinate. Moreover, for transient continuous cultures in which the nicotinate concentration was gradually lowered, growth parameters remained unchanged until an apparently critical level of 0.7 microM nicotinate was reached. Below this nicotinate level, an immediate washout of the chemostat population began. A. caulinodans nicotinate hydroxylase-negative mutant 61007, unable to catabolize nicotinate, and the wild type behaved similarly. Thus, for continuous cultures supplied with N2 as the N source, submicromolar concentrations of nicotinate both sustained pyridine nucleotide biosynthesis at sufficient levels and precluded the use of nicotinate as a catabolic substrate. Furthermore, when more nicotinate was provided, dual succinate-nicotinate limitation in continuous cultures did not occur. Finally, when nicotinate is present in suboptimal concentrations, the specific growth rate is directly proportional to the amount of nicotinate present per unit of biomass. By contrast, in batch cultures with different nicotinate concentrations and with either succinate or lactate as the carbon and energy source, anomalous growth curves were obtained. With a low concentration (1.5 microM) of nicotinate, growth on N2 occurred, albeit at low rates. With a high concentration (195 microM) of nicotinate, growth on N2 was temporarily stimulated, but nicotinate was quickly exhausted and growth was thereafter nicotinate limited. Continuous supplementation of batch cultures with nicotinate allowed only transient exponential growth followed by linear growth. Thus, also for batch cultures, nicotinate catabolism is dispensable, although a high concentration of nicotinate temporarily stimulates growth on N2. Ut us concluded that A. caulinodans is a true diazotroph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号