首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methods were identified for the introduction of plasmid DNA into Rhodospirillum rubrum, including freeze-thaw and CaCl2-based techniques.Abbreviations cfu colony forming units - DMSO dimethyl sulfoxide - DTT dithiothreitol - O.D.680 optical density at 680 nm  相似文献   

2.
The conditions under which an oscillatory behaviour is observed during net hydrolysis or synthesis of ATP in chromatophores of Rhodospirillum rubrum FR1 are described. In the case of ATPase the oscillations are observed at low temperature (ca. 11°C) in the dark after an initial transient behaviour. These oscillations are attenuated or disappear by the addition of an uncoupler.Oscillations are also observed during ATP synthesis. At 3°C the oscillations appear spontaneously if photophosphorylation is measured during a sufficiently long time. At 30°C the mere intercalation of a dark period also at 30°C is sufficient to trigger the oscillations in the following light period.Abbreviations Bchl Bacteriochlorophyll - FCCP carbonyl cyanide p-trifluoromethoxyphenyl hydrazone - PMS phenazine methosulfate - TMPD, N,N,N,N tetramethyl-1,4-phenylenediamine Dedicated to Prof. Dr. Gerhart Drews as a homage for his permanent example as hard worker and careful scientist and also for his remarkable human quality  相似文献   

3.
Arrhenius plots for ATP synthesis, coupled to endogenous and Phenazine methosulfate or N,N,N,N,-Tetramenthyl-1,4-Phenylene diamine-mediated photosynthetic election transport and for ATP hydrolysis were studied in Rhodospirillum rubrum chromatophores.Coupled or uncoupler induced Mg-ATPase show no discontinuity in the range tested (30°C-5°C) and they also have the same activation energy. Phenazine methosulfatecatalyzed photophosphorylation has also a single activation energy where as the endogenous reaction shows complex and ageing dependent behaviour, alternating temperature ranges having high (45.2 to 144,4 kJ·mol-1) and very low (ca 0.0 to 3.3 kJ·mol-1) activation energy.Abbreviations Bchl Bacteriochlorophyll - Ea Activation energy - FCCP Carbonyl Cyanide p. Trifluoromethoxy henyl Hydrazone - PMS phenazine methosulfate - TMPD N,N,N,N-Tetramethyl-1,4-Phenylene diamine - R Rhodospirillum  相似文献   

4.
During the 1880's, Erwin von Esmarch was a junior associate (Assistent) of Robert Koch studying bacteria of medical significance. In 1887, he isolated the first example of spiral-shaped bacteria in pure culture, from the dry residue of a dead mouse that he had suspended sometime earlier in Berlin tap-water. Under certain conditions, colonies of the organism were the color of red wine, and this led Esmarch to name the bacterium Spirillum rubrum. Twenty years later, Hans Molisch demonstrated that S. rubrum, an apparent heterotroph, was in fact a non-oxygenic purple photosynthetic bacterium, and it was renamed Rhodospirillum rubrum. Esmarch was a careful investigator and his classic paper of 1887 details the serendipitous isolation and general characteristics of the first pure culture of an anoxyphototroph, which later played a prominent role as an experimental system for study of basic aspects of bacterial photosynthesis. This report includes an English translation of his original paper (in German), a commentary on the historical significance of Esmarch's spirillum, and a summary of Esmarch's career.  相似文献   

5.
Biological hydrogen production from synthesis gas was carried out in batch culture. The phototrophic anaerobic bacterium, Rhodospirillum rubrum was used to oxidize CO and water to CO2 and hydrogen. The bacteria were grown under anaerobic conditions in liquid medium; also acetate was used as carbon source in presence of synthesis gas. Biological hydrogen production was catalysed by R. rubrum via the water–gas shift reaction. A light-dependent cell growth modelled with a desired rate of hydrogen production and CO uptake was determined. The effect of light intensity on microbial cell growth was also studied at 500, 1,000 and 1,500 m.cd. A complete conversion of CO to hydrogen and maximum light efficiency were obtained with an acetate concentration of 1 g/l and light intensity of 500 m.cd. Utilization of the carbon monoxide from the gas phase was often considered as a mass transfer limited process, which needed to diffuse through the gas–liquid interface and then further diffuse into liquid medium prior to reaction. The results from this study showed that maximum cell propagation and hydrogen production were achieved with a limited light intensity of 1,000 m.cd. It was also found that high-light intensity may interfere with cell metabolism. In low-light intensity and substrate concentration, no inhibition was observed, however at extreme conditions, non-competitive inhibition was identified. The adverse effect of high-light intensity was shown at 5,000 m.cd, where the CO conversion drastically dropped to as low as 21%. Maximum CO conversion of 98% and maximum yield of 86% with an acetate concentration of 1.5 g/l and a light intensity of 1,000 m.cd were achieved.  相似文献   

6.
Tripositive-pyrophosphate [M(III)-PPi] complexes were used to investigate the role of free divalent cations on the membrane-bound pyrophosphatase. Divalent cations remain free and the M(III)-PPi complexes were employed as substrates. Formation of a La-PPi complex was studied by fluorescence, and the fact that Zn2+ and Mg2+ remain free in the solution was validated. Hydrolysis of La-PPi is stimulated by the presence of fixed concentrations of free Mg2+ or Zn2+ and this stimulation depends on the concentration of the cations when the La-PPi complex is fixed. The divalent cation stimulation order is Zn2+ > Co2+ > Mg2+ > Mn2+ > Ca2+ (at 0.5 mm of free cation). With different M(III)-PPi complexes, Zn2+ produces the same Km, for all the complexes and Mg2+ stimulates with a different Km. The results suggest that both Mg2+ and Zn2+ activate the membrane-bound pyrophosphatase but through different mechanisms.  相似文献   

7.
Chemical modifications with water-soluble carbodiimides (EDC and CMC) were performed to elucidate whether some carboxyl residues are involved in the catalytic activity of membrane-bound pyrophosphatase ofRhodospirillum rubrum. EDC and CMC cause a loss of hydrolytic activity following pseudo-first-order kinetics up to 10 min of reaction. The enzyme was completely protected against EDC inhibition by PPi or Mg2+, whereas PPi or Mg2+ gave partial protection against CMC inactivation. Mg-PPi protected completely against the inhibition caused by both carbodiimides. These data suggest that the carboxyl moiety modified by EDC is at the active site. At longer times of inactivation with both carbodiimides, we could not observe a linear relationship in semilogarithmic plots of residual activity versus time, indicating that at least two carboxyls are involved in the inactivation, which correlates with the partial protection against CMC inactivation by PPi. We found that the activator site for Mg2+ is apparently at or near the active site of the enzyme. This is supported by the fact that PPi protects completely the activator effect of this divalent cation.  相似文献   

8.
An ammonium transport system in the phototrophic N2-fixing bacteriumRhodospirillum rubrum was characterized by using the uptake of14C-methylamine as a probe.Uptake showed saturation kinetics with an apparentK m =110 M. It was competitively inhibited by ammonium (K i =7 M). Uptake exhibited a narrow pH maximum around pH 7.0.Up to 200-fold gradients across the membrane were formed within 40–60 min. Gradient formation was inhibited by carbon starvation, azide or cyanide. Pre-accumulated methylamine was released by ammonium pulses to more than 80%, indicating only minor metabolization.The synthesis of the transport system was repressed by ammonium in high concentrations.  相似文献   

9.
The cell wall lipopolysaccharides from three phototrophic species of the alpha1-group of Proteobacteria, Rhodospirillum rubrum, Rhodospirillum molischianum, and Rhodopila globiformis were isolated and chemically characterized. Sodium deoxycholate polyacrylamide gel electrophoresis patterns revealed that the lipopolysaccharides of all three species possess O-chains. They are composed of repeating units only in R. molischianum and R. globiformis. The presence of l-glycero-d-mannoheptose and 2-keto-3-deoxyoctonate indicated core structures in all three lipopolysaccharides. Glucosamine was found as backbone amino sugar in lipid A of R. molischianum and R. rubrum, while R. globiformis has 2,3-diaminoglucose as backbone amino sugar. The latter species also differed from the two former ones in its content of hydroxy fatty acids (3-OH-14:0, 3-OH-16:0 in R. rubrum and R. molischianum and 3-OH-14:0, 3-OH-18:0 and 3-OH-19:0 (possibly iso- or anteisobranched) in R. globiformis).Abbreviations DOC-PAGE sodium deoxycholate polyacrylamide gel electrophoresis - GC/MS combined gas-liquid chromatography/mass spectrometry - KDO 2-keto-3-deoxyoctonate  相似文献   

10.
Mitochondrial cytochromec (horse), which is a very efficient electron donor to bacterial photosynthetic reaction centersin vitro, binds to the reaction center ofRhodospirillum rubrum with an approximate dissociation constant of 0.3–0.5 µM at pH 8.2 and low ionic strength. The binding site for the reaction center is on the frontside of cytochromec which is the side with the exposed heme edge, as revealed by differential chemical acetylation of lysines of free and reaction-center-bound cytochromec. In contrast, bacterial cytochromec 2 was found previously to bind to the detergent-solubilized reaction center through its backside, i.e., the side opposite to the heme cleft [Rieder, R., Wiemken, V., Bachofen, R., and Bosshard, H. R. (1985).Biochem. Biophys. Res. Commun. 128, 120–126]. Binding of mitochondrial cytochromec but not of mitochondrial cytochromec 2 is strongly inhibited by low concentrations of poly-l-lysine. The results are difficult to reconcile with the existence of an electron transfer site on the backside of cytochromec 2.  相似文献   

11.
The increase in the rate of the primary back reaction on cooling the photoreaction center from Rhodospirillum rubrum was interpreted in terms of a model in which the peculiar temperature dependence of the rate results from a phase transition involving water. The primary back reaction is defined as the return of the electron from the reduced primary ubiquinone to the oxidized bacteriochlorophyll molecules following illumination. The dye 8-anilino-1-naphthalene sulfonate was used to detect the state of the water solvent as it transforms on cooling from a liquid to a solid glass. We inferred from studies with air-dried films of photoreaction center that the water which may be responsible for the unusual temperature dependence of the rate of the primary back reaction is not on the surface but is bound within the photoreaction center protein.  相似文献   

12.
The photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum chromatophores have been compared in respect to the effects of artificial electron carries [N-methyl-phenazonium methosulfate (PMS) and diaminodurene], reducing agents (ascorbate in particular), and various quinones in the absence and presence of the electron transport inhibitors antimycin A and dibromothymoquinone (DBMIB). In addition, the effects of both inhibitors on photosynthetic electron transport through cytochromes b and c has been followed. From the results obtained, it appears that in both organisms: a) ubiquinone functions as an electron carrier between the cytochromes, and b) both antimycin A and DBMIB inhibit cyclic electron flow in the segment ... cytochrome bubiquinone»cytochrome c ..., but at different sites. The systems apparently differ mainly in respect to the nature of the electron flow by-pass shunt that is evoked in the presence of PMS; thus, in R. rubrum, PMS catalyzes a shunt that by-passes both cytochrome b and ubiquinone, whereas in Rps. capsulata the PMS shunt seems to circumvent only ubiquinone.Abbreviations BChl bacteriochlorophyll - DAD diaminodurene=2,3,5,6-tetramethyl-p-phenylenediamine - DBMIB dibromothymoquinone=2,5-dibromo-6-isopropyl-3-methylbenzoquinone - HOQNO heptylhydroxyquinoline-N-oxide - PMS N-methylphenazonium methosulfate  相似文献   

13.
A solubilized preparation of the major Rhodospirillum rubrum antenna complex (B880) was obtained by a described procedure and its polypeptide composition was analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Only two polypeptides of molecular weights close to 7000 were detected after staining the gels with Coomassie brilliant blue. However, several other constituents could be visualized by silver staining or by an immunochemical method. When the preparation was chromatographed on Sephacryl, some of the resulting fractions exhibited the characteristic B880 absorption spectrum and contained only the two proteins that were detectable with Coomassie brilliant blue. In those fractions the A280/A880ratio was 0.4, which indicated a significant improvement of the bacteriochlorophyll to protein ratio over the unchromatographed preparation (A280/A880=0.7). Other chromatography fractions lacked bacteriochlorophyll and contained a carotenoid which seemed to be bound to protein. The macromolecular constituents present in these latter fractions differed from those associated to the purified B880 complex in their electrophoretic moblities and/or in their staining properties. That suggested the possible existence of a carotenoprotein that did not result from the B880 complex upon loss of bacteriochlorophyll.  相似文献   

14.
The complete sequence of amino acids of ferredoxin II (FdII) from Rhodospirillum rubrum was determined by repetitive Edman degradation using pyridylethylated-ferredoxin and oxidized, denatured ferredoxin. Peptides derived from trypsin, pepsin, Glu-C endoproteinase, Arg-C endoproteinase, tryptophan specific cleavage and partial acid hydrolysis and C-terminal sequence from carboxypeptidase digestion were used to construct the total sequence. RrFdII is a polypeptide of 104 amino acids having a calculated molecular weight of 11556 excluding the iron and sulfur atoms. The complete amino acid sequence was: PYVVTENCIKCKYQDCVEVCPVDCFYEGENFLVINPDECIDCGVCNPECPAEAIAGKWLEINRKFADLWPNITRKGPAL ADADDWKDKPDKTGLLSENPGKGTV. Sequence comparisons, EPR characteristics and iron analyses indicate that RrFdII has structural features in common with ferredoxins containing [3Fe-4S], [4Fe-4S] centers. Of 104 amino acids, 60 (58%) including all 9 cysteines, are found in identical locations in the 7Fe ferredoxin prototype, Azotobacter vinelandii FdI.The protein sequence data reported in this paper will appear in the SWISS-PROT database and EMBL Data Library under the accession number P80448.  相似文献   

15.
Dibromothymoquinone has been shown to inhibit light-induced cytochrome b reduction, and oxidation of succinate and NADH by chromatophores of Rhodopseudomonas capsulata. The half-inhibitory concentration of light-induced reactions and NADH oxidation is 2.5 M, but of succinate oxidation is 16 M. Hexane extraction inhibited oxidation of NADH and succinate equally. The results are interpreted to suggest that ubiquinone is concerned in all three processes described, but that the pools associated with NADH and succinate oxidation are not equally accessible to dibromothymoquinone.Abbreviations DBMIB Dibromothymoquinone - NADH Reduced nicotinamide adenine dinucleotide - Bchl Bacteriochlorophyll  相似文献   

16.
The carbonic anhydrase (EC 4.2.1.1) of Rhodospirillum rubrum has been purified to apparent homogeneity and some of its properties have been determined. The enzyme was cytoplasmic and was found only in photosynthetically grown cells. It had a molecular weight of about 28,000, and was apparently composed of two equal subunits. The amino acid composition was similar to that of other reported carbonic anhydrases except that the R. rubrum enzyme contained no arginine. The isoelectric point of the enzyme was 6.2 and the pH optimum was 7.5. It required Zn(II) for stability and enzymatic activity. The K m(CO2) was 80 mM. Typical carbonic anhydrase inhibition patterns were found with the R. rubrum enzyme. Strong acetazolamide and sulfanilamide inhibition confirmed the importance of Zn(II) for enzymatic activity as did the anionic inhibitors iodide, and azide. Other inhibitors indicated that histidine, sulfhydryl, lysine and serine residues were important for enzymatic activity.Abbreviation CA carbonic anhydrase In memory of R. Y. Stanier  相似文献   

17.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

18.
Anaerobic suspensions of Rhodospirillum rubrum cells which had been grown in the dark under low oxygen tension showed only a small increase of their ATP content when illuminated for 30 s. The same suspensions failed to start immediate growth in the light. Both high light-induced ATP levels and immediate phototrophic growth were elicited by small amounts of oxygen which were insufficient by themselves to raise the ATP levels or to support growth in the dark. The oxygen requirement for growth disappeared after some time of anaerobic illumination and was not observed in suspensions of cells which had been grown in the light under anaerobiosis. Furthermore, these phototrophic cells reached the maximum levels of ATP when illuminated in the absence of oxygen.Strain F11, a mutant derivative of Rhodospirillum rubrum which lacked the ability to photoreduce oxygen in vitro, needed abnormally high amounts of oxygen to increase its ATP levels and to grow in the light. Besides, KCN inhibited the increase of ATP levels in illuminated mutant cells but not wild type cells. An additional difference between both strains was that the oxygen requirement for growth did not disappear in the mutant after some time of anaerobic incubation in the light.To explain these observations, it is proposed that the photosynthetic system of semiaerobically-grown Rhodospirillum rubrum becomes overreduced under anaerobiosis. The oxygen-photoreducing system, which is impaired in the mutant, is apparently used to oxidize the photosynthetic system to its optimal redox state, carrying electrons to oxygen or to other endogenous acceptors which are formed during incubation in the light. The mutant seems to replace the defective system by a cyanide-sensitive pathway which may reduce oxygen but not the alternative endogenous acceptors.  相似文献   

19.
The behaviour of lipid bilayer membranes, made of oxidized cholesterol, and UO22+-modified azolectin membranes in a high electric field has been investigated using the voltage clamp method. When a voltage pulse is applied to the membrane of these compositions, the mechanical rupture of the membranes is preceded by a gradual conductance increase which remains quite reversible till a certain moment. The voltage drop at this reversible stage of breakdown leads to a very rapid (characteristic time of less than 5 μs) decrease in the membrane conductance. At repeated voltage pulses of the same amplitude with sufficient intervals between them (approx. 10 s), the current oscillograms reflecting the reversible resistance decrease are well reproduced on the same membrane. The time of attainment of the predetermined level of the membrane conductance is strongly dependent on voltage. At different stages of breakdown we have investigated changes in the conductance of UO22+-modified membrane after the application of two-step voltage pulses, the kinetics of development of the reversible decrease in the membrane resistance in solutions of univalent and divalent ions, and also the influence of sucrose and hemoglobin on the current evolution. The relationship between the reversible conductance increase, the reversible electrical breakdown [15] and the rupture of membrane in an electric field is discussed. We propose the general interpretation of these phenomena, based on the representation of the potential-dependent appearance in the membrane of pores, the development of which is promoted by an electric field.  相似文献   

20.
Rhodospirillum rubrum was grown continuously and photoheterotrophically under light limitation using a cylindrical photobioreactor in which the steady state biomass concentration was varied between 0.4 to 4 kg m–3 at a constant radiant incident flux of 100 W m–2. Kinetic and stoichiometric models for the growth are proposed. The biomass productivities, acetate consumption rate and the CO2 production rate can be quantitatively predicted to a high level of accuracy by the proposed model calculations. Nomenclature: C X, biomass concentration (kg m–3) D, dilution rate (h–1) Ea, mean mass absorption coefficient (m2 kg–1) I , total available radiant light energy (W m–2) K, half saturation constant for light (W m–2) R W, boundary radius defining the working illuminated volume (m) r X, local biomass volumetric rate (kg m–3 h–1) <r X>, mean volumetric growth rate (kg m–3 h–1) V W, illuminated working volume in the PBR (m–3). Greek letters: , working illuminated fraction (–) M, maximum quantum yield (–) bar, mean energetic yield (kg J–1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号