首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Mesembryanthemum crystallinum responds to high salinity in the soil by shifting the mode of carbon assimilation from the C3 mode to Crassulacean acid metabolism (CAM). Several enzymes of carbon metabolism have increased apparent activities in the CAM mode, including phosphoenolpyruvate carboxylase (PEPcase) and pyruvate orthophosphate dikinase (PPDK). We have identified cDNA clones for PEPcase and PPDK by immunological screening of a cDNA library constructed in the protein expression vector lambda gt11. The clones were characterized by immunoblotting and RNA blotting techniques. RNA blotting showed that during CAM induction the steady-state level of mRNAs for both PEP case and PPDK increased.Abbreviations IPTG isopropyl thiogalactoside - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - PPDK pyruvate orthophosphate dikinase - Xgal-5 bromo-4-chloro-3-indolyl-beta-D-galactopyranoside  相似文献   

3.
This review deals with the factors controlling the aggregation-state of several enzymes involved in C4 photosynthesis, namely phosphoenolpyruvate carboxylase, NAD-and NADP-malic enzyme, NADP-malic dehydrogenase and pyruvate, phosphate dikinase and its regulatory protein. All of these enzymes are oligomeric and have been shown to undergo changes in their quaternary structure in vitro under different conditions. The activity changes linked to variations in aggregation-state are discussed in terms of their putative physiological role in the regulation of C4 metabolism.Abbreviations P-enolpyruvate phosphoenolpyruvate - NAD-ME NAD-dependent malic enzyme - NADP-ME NADP-dependent malic enzyme - NADP-MDH NADP-dependent malic dehydrogenase - PPDK pyruvate, phosphate dikinase - PPDK-RP pyruvate, phosphate dikinase regulatory protein - Vmax maximal velocity - Km Michaelis constant - CAM Crassulacean acid metabolism  相似文献   

4.
First leaves and flag leaves of the wheat species Triticum aestivum cv Anza (6×), T. boeoticum Boiss (2×) L. were examined for content of pyruvate, orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and ribulose 1,5-bisphosphate carboxylase (RuBPC) by protein blot analyses using antibodies to maize leaf enzymes and by activity assays. In agreement with previous reports, the amount of RuBPC per mesophyll cell was about 3 times more in the hexaploid species, T. aestivum, than in the diploid species, T. boeoticum, both in first leaves and in flag leaves. In contrast, the level of PPDK polypeptide was nearly 3-fold higher per unit leaf area in the first leaf and 63% higher in the flag leaf of this diploid species compared to this hexaploid species. There was no significant difference in the levels of polypeptide and enzyme activity of PEPC between diploid and hexaploid wheat. Despite this significantly greater level of PPDK in the diploid species, the actual amount of PPDK could still supply only a limited amount of the enzyme activity necessary to provide phosphoenolpyruvate (PEP) for any putative intracellular C4 carbon shuttle providing carbon to RuBPC. Thus, this difference in enzyme amount could not by itself account for the reported high rates of net photosynthesis at high light intensity in T. boeoticum. Together with reported anatomical differences between the diploid and hexaploid species, however, this biochemical difference may be of physiological importance.  相似文献   

5.
Soluble protein has been extracted from sections of wheat leaves, from base to tip, and the content of several key enzymes of photosynthetic carbon assimilation in each section has been determined by the protein blot method. In the first leaf, ribulose 1,5-bisphosphate carboxylase (RuBPC) (EC 4.1.1.39) in the basal 0 to 1 centimeter section is about 12% the level in the tip section, whereas phosphoenolpyruvate carboxylase (EC 4.1.1.31) is present in small amounts in the basal section and does not change much in the tip. Pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) first appears in the 4 to 6 centimeter section and increases gradually with development to 10-fold in the tip. Malic enzyme, NADP-dependent (EC 1.3.1.37) also appears in the 4 to 6 centimeter section but remains low to the tip.

Fixation of 14CO2 by wheat leaf base sections resulted in 42% of total incorporation into malate and aspartate, indicating β-carboxylation, whereas in the tip section these labeled compounds were only 8% of the total. Although the amount of PPDK in wheat leaves is only 1 to 3% of that in maize leaves, this C3 PPDK may have a limited role in photosynthesis leading to formation of C4 compounds. The possibility of a further role, similar to that in C4 plants, but for intracellular carbon transport in wheat leaves is discussed. The presence of malic dehydrogenase, NADP-specific (EC 1.1.1.82) in wheat leaf chloroplasts was shown, a necessary though not sufficient condition for such a proposed role. Assuming each of the four enzymes associated with C4 carbon transport were fully active in vivo during photosynthesis, PPDK would still be rate limiting, even in the leaf tip where its activity is maximal. Possible evolutionary and breeding implications are discussed.

  相似文献   

6.
Alterations of plant growth, chlorophyll fluorescence parameters, nodule carbon metabolism and polyols concentration as result of salt stress were examined in alfalfa (Medicago sativa). Plants, in symbiosis with Sinorhizobium meliloti GR4 strain, were grown under controlled conditions for 35 days (DAS) and subjected to 150 mM of NaCl stress. Plant biomass (PDW) and nitrogen fixation rate (NFR) were markedly affected by salt stress conditions; the highest reductions of PDW (50%) and NFR (40%) were registered at 84 DAS and 56 DAS, respectively. In addition, salinity affected the chlorophyll fluorescence parameters, decreased initial chlorophyll fluorescence (F0) and increased the optimum quantum yield of PSII (Fv/Fm ratio). The enzyme activities sucrose synthase activity and phosphoenolpyruvate carboxylase, responsible for the carbon supply to the bacteroids by the formation of dicarboxylates, were drastically inhibited by salinity, mainly at 56 DAS with the beginning of flowering. The content of total soluble sugars and proline increased under salt stress, and these concentrations were higher in nodule than in leaf. This last result suggests that the nodule is an organ specially protected in order to maintain its functioning, even under stress conditions. Besides, the content of myoinositol and pinitol in leaves and nodules changed with the plant growth stage and the saline treatment. Under salinity stress, the concentrations of pinitol in nodule were higher than in leaf, which supports the central function of this molecule in the adaptive response of nodules to salt stress. The increase of pinitol synthesis in nodule of M. sativa under salt stress could be one of the adaptive features used by the plant.  相似文献   

7.
8.
9.
Photosynthesis in submersed macrophytes of a temperate lake   总被引:4,自引:1,他引:3       下载免费PDF全文
Beer S  Wetzel RG 《Plant physiology》1982,70(2):488-492
The photosynthetic carbon fixation pathways and levels of carbon-fixing enzymes of four dominant submersed macrophytes of Lawrence Lake, southern Michigan, were investigated during the main growth season (May to November). All four species (Scirpus subterminalis Torr., Najas flexilis (Willd.) Rostk. and Schmidt, Potamogeton praelongus Wulf., and Myriophyllum heterophyllum Michx.) were C3 plants based on their patterns of 14C pulse-chase incorporation. High levels of phosphoenolpyruvate carboxylase were also found in these species. These levels, as well as the ribulose 1,5-biphosphate carboxylase/phosphoenolpyruvate carboxylase ratio of the leaves, varied throughout the growing season and exhibited highest values in July. No shift in carbon fixation pathways, however, could be detected from July to October. The possible functions of phosphoenolypyruvate carboxylase in these plants, as well as the significance of C3 metabolism in submersed plants of temperate lakes, are delineated.  相似文献   

10.
11.
We have utilized the cellular differentiation gradient of the developed, youngest leaf to examine the regulation by nitrogen of levels of phosphoenolpyruvate carboxylase (PEPCase), pyruvate orthophosphate dikinase (PPDK), and ribulose 1,5-bisphosphate carboxylase in maize (Zea mays L.). The protein whose level regulated most preferentially by N availability was PEPCase, followed by PPDK, and the changes in level occurred most conspicuously at the photosynthetically maturing cells. Pulse and pulse-chase experiments to analyze photosynthetic fixation of [14C]CO2 indicate that maize leaf primarily exploited a C4-mode of photosynthetic fixation of carbon dioxide even under a selective reduction in levels of these proteins. The effects of N on the synthesis of these proteins and the accumulation of corresponding mRNAs during recovery from a deficiency were examined by pulse and pulse-chase labeling with [35S]Met and by hybridization, respectively. The rate of turnover of PPDK was substantially higher than that of the other proteins. Results also showed that the reduced accumulation of PEPCase, as well as PPDK, under N deficiency could largely be accounted for a reduced level of synthesis of protein with a concomitant reduction in level of their mRNAs. This indicates that the N-dependent selective accumulation of these enzymes is primarily a consequence of level of its mRNAs.  相似文献   

12.
Regenerating maize A188 tissue cultures were examined for the presence of enzymes involved in C4 photosynthesis, for cell morphology, and for 14C labeling kinetics to study the implementation of this pathway during plant development. For comparison, sections of maize seedling leaves were examined. Protein blot analysis using antibodies to leaf enzymes showed a different profile of these enzymes during the early stages of shoot regeneration from callus from the closely-coordinated profile observed in seedling leaves. Pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) and phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.31) were found in nonchlorophyllous callus while ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and malic enzyme, NADP-specific (ME-NADP) (EC 1.3.1.37) were not detectable until later.

Enzyme activity assays showed the presence of ME-NADP as well as PEPC and PPDK in nonchlorophyllous callus. However, the activities of ME-NADP and PEPC had properties similar to those of the enzymes from C3 leaves and from etiolated C4 leaf tissues, but differing from the corresponding enzymes in the mature leaf.

Immunoprecipitation of in vitro translation products of poly(A)RNA extracted from embryoid-forming callus showed both the 110 kilodalton precursor to chloroplast PPDK and the 94 kilodalton polypeptide. Therefore, the chloroplast tye of PPDK mRNA is present prior to the appearance of leaf morphology.

Analysis of the labeled products of 14CO2 fixation by nonchlorophyllous calli indicated β-carboxylation to give acids of the tricarboxylic acid cycle, but no incorporation into phosphoglycerate. With greening of the callus, some incorporation into phosphoglycerate and sugar phosphates occurred, and this increased in shoots as they developed, although with older shoots the increase in β-carboxylation products was even greater. Analysis of enzyme levels in young leaf sections by protein blot and of 14C-labeling patterns in the present study are in general agreement with enzyme activity determinations of previous studies, providing additional information about PPDK levels, and supporting the model proposed for developing young leaves.

These results suggest that maize leaves begin to express C4 enzymes during ontogeny through several stages from greening and cell differentiation as seen in the callus and then shoot formation, and finally acquire capacity for full C4 photosynthesis during leaf development concomitant with the development of Kranz anatomy and accumulation of large amounts of enzymes involved in carbon metabolism.

  相似文献   

13.
There are relatively few reports on the leaf structure and in situ immunolocalization of carbon metabolism enzymes in crassulacean acid metabolism (CAM) plants, compared with reports on C4 plants. The leaf inner structure and the subcellular location of some key CAM enzymes for a phosphoenolpyruvate carboxykinase (PCK) CAM species, Ananas comosus, and three malic enzyme (ME) CAM species, Mesembryanthemum crystallinum, Kalanchoe daigremontiana, and K. pinnata, was investigated by immunogold labelling and electron microscopy in this study. The leaves of these species had few intercellular air spaces in the mesophyll. A large vacuole occupied the mesophyll cells, and many vesicles of various sizes occurred in the cytosol. Immunocytochemical study revealed that labelling was present for phosphoenolpyruvate carboxylase in the cytosol and for ribulose-1,5-bisphosphate carboxylase/oxygenase in the chloroplasts of the mesophyll cells in all species. No specific labelling for pyruvate orthophosphate dikinase (PPDK) was observed in the PCK-CAM species. In the ME-CAM species, the patterns of labelling for PPDK differed. In M. crystallinum labelling for PPDK was present only in the chloroplasts, whereas in the two Kalanchoe species it occurred in the cytosol as well as in the chloroplasts. These results suggest that the subcellular localization of PPDK varies with ME-CAM species, in contrast to the conventional belief that it is localized in the chloroplasts.Key words: Crassulacean acid metabolism, immunolocalization, leaf inner structure, phosphoenolpyruvate carboxylase, pyruvate orthophosphate dikinase.   相似文献   

14.
Cheng SH  Moore BD  Wu J  Edwards GE  Ku MS 《Plant physiology》1989,89(4):1129-1135
Photosynthesis was examined in leaves of Flaveria brownii A. M. Powell, grown under either 14% or 100% full sunlight. In leaves of high light grown plants, the CO2 compensation point and the inhibition of photosynthesis by 21% O2 were significantly lower, while activities of ribulose 1,5-bisphosphate carboxylase/oxygenase and various C4 cycle enzymes were considerably higher than those in leaves grown in low light. Both the CO2 compensation point and the degree of O2 inhibition of apparent photosynthesis were relatively insensitive to the light intensity used during measurements with plants from either growth conditions. Partitioning of atmospheric CO2 between Rubisco of the C3 pathway and phosphoenolpyruvate carboxylase of the C4 cycle was determined by exposing leaves to 14CO2 for 3 to 16 seconds, and extrapolating the labeling curves of initial products to zero time. Results indicated that ~94% of the CO2 was fixed by the C4 cycle in high light grown plants, versus ~78% in low light grown plants. Thus, growth of F. brownii in high light increased the expressed level of C4 photosynthesis. Consistent with the carbon partitioning patterns, photosynthetic enzyme activities (on a chlorophyll basis) in protoplasts from leaves of high light grown plants showed a more C4-like pattern of compartmentation. Pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase were more enriched in the mesophyll cells, while NADP-malic enzyme and ribulose 1,5-bisphosphate carboxylase/oxygenase were relatively more abundant in the bundle sheath cells of high light than of low light grown plants. Thus, these results indicate that F. brownii has plasticity in its utilization of different pathways of carbon assimilation, depending on the light conditions during growth.  相似文献   

15.
  • Miscanthus sinensis Anderss. is a good candidate for C4 bioenergy crop development for marginal lands. As one of the characteristics of marginal lands, salinization is a major limitation to agricultural production. The present work aimed to investigate the possible factors involved in the tolerance of M. sinensis C4 photosynthesis to salinity stress.
  • Seedlings of two accessions (salt‐tolerant ‘JM0119’ and salt‐sensitive ‘JM0099’) were subjected to 0 mm NaCl (control) or 250 mm NaCl (salt stress treatment) for 2 weeks. The chlorophyll content, parameters of photosynthesis and chlorophyll a fluorescence, activity of C4 enzymes and expression of C4 genes were measured.
  • The results showed that photosynthesis rate, transpiration rate, chlorophyll content, PSII operating efficiency, coefficient of photochemical quenching, activity of phosphoenolpyruvate carboxylase (PEPC) and pyruvate, orthophosphate dikinase (PPDK) and gene expression of PEPC and PPDK under salinity were higher after long‐term salinity exposure in ‘JM0119’ than in ‘JM0099’, while activity of NADP‐malate dehydrogenase (NADP‐MDH) and NADP‐malic enzyme (NADP‐ME), together with expression of NADP‐MDH and NADP‐ME, were much higher in ‘JM0099’ than in ‘JM0119’.
  • In conclusion, the increased photosynthetic capacity under long‐term salt stress in the salt‐tolerant relative to the salt‐sensitive M. sinensis accession was mainly associated with non‐stomatal factors, such as reduced chlorophyll loss, higher PSII operating efficiency, enhanced activity of PEPC and PPDK and relatively lower activity of NADP‐ME.
  相似文献   

16.
Phosphoenolpyruvate carboxylase isolated from maize (Zea mays L.) leaves was assayed with varying concentrations of free phosphoenolpyruvate at several fixed-varying concentrations of free magnesium higher than required to saturate the enzyme reaction. These assays produced velocity data which were found to form a family of individual lines when plotted against free phosphoenolpyruvate or against total phosphoenolpyruvate, but not when plotted against the concentration of the complex of phosphoenolpyruvate with magnesium. In this latter case, the points from all the fixed-varying concentrations fell on the same line, which can be fitted to a modified Michaelis-Menten equation with a multiple correlation coefficient R2 = 0.995. Similar results were obtained when the enzyme from the C4 plant maize was assayed with manganese rather than magnesium and when phosphoenolpyruvate carboxylase from leaves of the C3 plant wheat (Triticum vulgare Vill.) was assayed with magnesium. However, at pH 7.0 the enzyme from the Crassulacean acid metabolism plant Crassula argentea did not produce a satisfactory single line when plotted against the complex of metal ion and substrate, but did so when the assay pH was raised to 8.0. It is concluded that in general the preferred form of substrate for phosphoenolpyruvate carboxylase is the complex of phosphoenolpyruvate with the metal ion.  相似文献   

17.
The effects of soil salt-alkaline (SA) stress on leaf physiological processes are well studied in the laboratory, but less is known about their effect on leaf, bark and branch chlorenchyma and no reports exist on their effect on C4 enzymes in field conditions. Our results demonstrated that activities of C4 enzymes, such as phospholenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), pyruvate orthophosphate dikinase (PPDK), and NADP-dependent malate dehydrogenase (NADP-MDH), could also be regulated by soil salinity/alkalinity in poplar (Populus alba × P. berolinensis) trees, similarly as the already documented changes in activities of antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), pigment composition, photosynthesis, and respiration. However, compared with 50–90% changes in a leaf and young branch chlorenchyma, much smaller changes in malondialdehyde (MDA), antioxidative enzymes, and C4 enzymatic activities were observed in bark chlorenchyma, showing that the effect of soil salinity/alkalinity on enzymatic activities was organ-dependent. This suggests that C4 enzymatic ratios between nonleaf chlorenchyma and leaf (the commonly used parameter to discern the operation of the C4 photosynthetic pathway in nonleaf chlorenchyma), were dependent on SA stress. Moreover, much smaller enhancement of these ratios was seen in an improved soil contrary to SA soil, when the fresh mass (FM) was used as the unit compared with a calculation on a chlorophyll (Chl) unit. An identification of the C4 photosynthesis pathway via C4 enzyme difference between chlorenchyma and leaf should take this environmental regulation and unit-based difference into account.  相似文献   

18.
The Pereskia are morphologically primitive, leafed members of the Cactaceae. Gas exchange characteristics using a dual isotope porometer to monitor 14CO2 and tritiated water uptake, diurnal malic acid fluctuations, phosphoenolpyruvate carboxylase, and malate dehydrogenase activities were examined in two species of the genus Pereskia, Pereskia grandifolia and Pereskia aculeata. Investigations were done on well watered (control) and water-stressed plants. Nonstressed plants showed a CO2 uptake pattern indicating C3 carbon metabolism. However, diurnal fluctuations in titratable acidity were observed similar to Crassulacean acid metabolism. Plants exposed to 10 days of water stress exhibited stomatal opening only during an early morning period. Titratable acidity, phosphoenolpyruvate carboxylase activity, and malate dehydrogenase activity fluctuations were magnified in the stressed plants, but showed the same diurnal pattern as controls. Water stress causes these cacti to shift to an internal CO2 recycling (“idling”) that has all attributes of Crassulacean acid metabolism except nocturnal stomata opening and CO2 uptake. The consequences of this shift, which has been observed in other succulents, are unknown, and some possibilities are suggested.  相似文献   

19.
Chu C  Dai Z  Ku MS  Edwards GE 《Plant physiology》1990,93(3):1253-1260
The facultative halophyte, Mesembryanthemum crystallinum, shifts its mode of carbon assimilation from the C3 pathway to Crassulacean acid metabolism (CAM) in response to water stress. In this study, exogenously applied abscisic acid (ABA), at micromolar concentrations, could partially substitute for water stress in induction of CAM in this species. ABA at concentrations of 5 to 10 micromolar, when applied to leaves or to the roots in hydroponic culture or in soil, induced the expression of CAM within days (as indicated by the nocturnal accumulation of total titratable acidity and malate). After applying ABA there was also an increase in phosphoenolpyruvate carboxylase and NADP-malic enzyme activities. The degree and time course of induction by ABA were comparable to those induced by salt and water stress. Electrophoretic analyses of leaf soluble protein indicate that the increases in phosphoenolpyruvate carboxylase activity during the induction by ABA, salt, and water stress are due to an increase in the quantity of the enzyme protein. ABA may be a factor in the stress-induced expression of CAM in M. crystallinum, serving as a functional link between stress and biochemical adaptation.  相似文献   

20.
《Process Biochemistry》2010,45(9):1459-1467
The aim of this work was to understand the relevance of central carbon metabolism in salt stress adaptation of Escherichia coli. The cells were grown anaerobically in batch and chemostat reactors at different NaCl concentrations using glycerol as a carbon source. Enzyme activities of the main metabolic pathways, external metabolites, ATP level, NADH/NAD+ ratio, l-carnitine production and the expression level of the main genes related to stress response were used to characterize the metabolic state under the osmotic stress. The results provided the first experimental evidence of the important role played by central metabolism adaptation and cell survival after long-term exposure to salt stress. Increased glycolytic fluxes and higher production of fermentation products indicated the importance of energy metabolism. Carbon fluxes under stress conditions were controlled by the decrease in the isocitrate dehydrogenase/isocitrate lyase ratio and the phosphoenolpyruvate carboxykinase/phosphoenolpyruvate carboxylase ratio, and the increase in the phosphotransferase/acetyl-CoA synthetase ratio. Altogether, the results demonstrate that, under salt stress, E. coli enhances energy production by substrate-level phosphorylation (Pta–Ack pathway) and the anaplerotic function of the TCA cycle, in order to provide precursors for biosynthesis. The results are discussed in relation with the general stress response and metabolic adaptation of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号