首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus pandemic. In both the avian influenza A(H5N1) and the recently emerging avian influenza A(H7N9) viruses, the polymerase basic 2 protein (PB2) E627K mutation appears to be of key importance for human adaptation. During a large influenza A(H7N7) virus outbreak in the Netherlands in 2003, the A(H7N7) virus isolated from a fatal human case contained the PB2 E627K mutation as well as a hemagglutinin (HA) K416R mutation. In this study, we aimed to investigate whether these mutations occurred in the avian or the human host by Illumina Ultra-Deep sequencing of three previously uninvestigated clinical samples obtained from the fatal case. In addition, we investigated three chicken samples, two of which were obtained from the source farm. Results showed that the PB2 E627K mutation was not present in any of the chicken samples tested. Surprisingly, the avian samples were characterized by the presence of influenza virus defective RNA segments, suggestive for the synthesis of defective interfering viruses during infection in poultry. In the human samples, the PB2 E627K mutation was identified with increasing frequency during infection. Our results strongly suggest that human adaptation marker PB2 E627K has emerged during virus infection of a single human host, emphasizing the importance of reducing human exposure to avian influenza viruses to reduce the likelihood of viral adaptation to humans.  相似文献   

2.
An avian influenza A H7N9 virus emerged in March 2013 and caused a remarkable number of human fatalities. Genome variability in these viruses may provide insights into host adaptability. We scanned over 140 genomes of the H7N9 viruses isolated from humans and identified 104 positions that exhibited seven or more amino acid substitutions. Approximately half of these substitutions were identified in the influenza ribonucleoprotein (RNP) complex. Although PB2 627K of the avian virus promotes replication in humans, 45 of the 147 investigated PB2 sequences retained the E signature at this position, which is an avian characteristic. We discovered 10 PB2 substitutions that covaried with K627E. An RNP activity assay showed that Q591K, D701N, and M535L restored the polymerase activity in human cells when 627K transformed to an avian-like E. Genomic analysis of the human-isolated avian influenza virus is crucial in assessing genome variability, because relationships between position-specific variations can be observed and explored. In this study, we observed alternative positions that can potentially compensate for PB2 627K, a well-known marker for cross-species infection. An RNP assay suggested Q591K, D701N, and M535L as potential markers for an H7N9 virus capable of infecting humans.  相似文献   

3.
J Wang  Y Sun  Q Xu  Y Tan  J Pu  H Yang  EG Brown  J Liu 《PloS one》2012,7(7):e40752
H9N2 influenza viruses have been circulating worldwide in multiple avian species and have repeatedly infected humans to cause typical disease. The continued avian-to-human interspecies transmission of H9N2 viruses raises concerns about the possibility of viral adaption with increased virulence for humans. To investigate the genetic basis of H9N2 influenza virus host range and pathogenicity in mammals, we generated a mouse-adapted H9N2 virus (SD16-MA) that possessed significantly higher virulence than wide-type virus (SD16). Increased virulence was detectable after 8 sequential lung passages in mice. Five amino acid substitutions were found in the genome of SD16-MA compared with SD16 virus: PB2 (M147L, V250G and E627K), HA (L226Q) and M1 (R210K). Assessments of replication in mice showed that all of the SD16-MA PB2, HA and M1 genome segments increased virus replication; however, only the mouse-adapted PB2 significantly increased virulence. Although the PB2 E627K amino acid substitution enhanced viral polymerase activity and replication, none of the single mutations of mouse adapted PB2 could confer increased virulence on the SD16 backbone. The combination of M147L and E627K significantly enhanced viral replication ability and virulence in mice. Thus, our results show that the combination of PB2 amino acids at position 147 and 627 is critical for the increased pathogenicity of H9N2 influenza virus in mammalian host.  相似文献   

4.
X Li  W Qi  J He  Z Ning  Y Hu  J Tian  P Jiao  C Xu  J Chen  J Richt  W Ma  M Liao 《PloS one》2012,7(6):e40118
H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS (or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2 chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine, (K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All together, these results indicate that the PB2 gene and especially position 627 determine virus replication and pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies transmission of H9N2 AIVs.  相似文献   

5.
Influenza A viruses are human and animal pathogens that cause morbidity and mortality, which range from mild to severe. The 2009 H1N1 pandemic was caused by the emergence of a reassortant H1N1 subtype (H1N1pdm) influenza A virus containing gene segments that originally circulated in human, avian, and swine virus reservoirs. The molecular determinants of replication and pathogenesis of H1N1pdm viruses in humans and other mammals are poorly understood. Therefore, we set out to elucidate viral determinants critical to the pathogenesis of this novel reassortant using a mouse model. We found that a glutamate-to-glycine substitution at residue 158 of the PB2 gene (PB2-E158G) increased the morbidity and mortality of the parental H1N1pdm virus. Results from mini-genome replication assays in human cells and virus titration in mouse tissues demonstrated that PB2-E158G is a pathogenic determinant, because it significantly increases viral replication rates. The virus load in PB2-E158G-infected mouse lungs was 1,300-fold higher than that of the wild-type virus. Our data also show that PB2-E158G had a much stronger influence on the RNA replication and pathogenesis of H1N1pdm viruses than PB2-E627K, which is a known pathogenic determinant. Remarkably, PB2-E158G substitutions also altered the pathotypes of two avian H5 viruses in mice, indicating that this residue impacts genetically divergent influenza A viruses and suggesting that this region of PB2 could be a new antiviral target. Collectively, the data presented in this study demonstrate that PB2-E158G is a novel pathogenic determinant of influenza A viruses in the mouse model. We speculate that PB2-E158G may be important in the adaptation of avian PB2 genes to other mammals, and BLAST sequence analysis identified a naturally occurring human H1N1pdm isolate that has this substitution. Therefore, future surveillance efforts should include scrutiny of this region of PB2 because of its potential impact on pathogenesis.  相似文献   

6.
Some highly pathogenic H5N1, H7N9, and H10N8 isolated from China carried six internal genes from H9N2 avian influenza viruses (AIV) and the key amino acids at 627 in PB2 of these viruses had mutated to K. To investigate the mechanism of increased pathogenicity for H9N2 AIV PB2 627K, we analyzed the difference in mouse lung proteins expression response to PB2 K627E. By iTRAQ method, we found that the mutated K627E contributed to a set of differentially expressed lung proteins, including five upregulated proteins and nine downregulated proteins at 12 h postinfection; ten upregulated proteins and 25 downregulated proteins at 72 h postinfection. These proteins were chiefly involved within the cytoskeleton and motor proteins, antiviral proteins, regulation of glucocorticoids signal‐associated proteins, pro‐ and anti‐inflammatory proteins. Alteration of moesin, FKBP4, Hsp70, ezrin, and pulmonary surfactant protein A (sp‐A) may play important roles in increasing virulence and decreasing lungs antiviral response. Further, three upregulated proteins (moesin, ezrin, and sp‐A) caused by PB2 K627E were also confirmed in A549 cells. Moreover, overexpression of sp‐A in A549 inhibited virus replication and downregulation promoted virus replication. In this study, sp‐A as a potential virulence determinant associated H9N2 AIV PB2 E627K mutation was identified using comparative proteomics.  相似文献   

7.
H9N2 avian influenza viruses (AIVs) circulate globally in poultry and have become the dominant AIV subtype in China in recent years. Previously, we demonstrated that the H9N2 virus (A/chicken/Eastern China/SDKD1/2015) naturally harbors a mammalian-adaptive molecular factor (627K) in the PB2 protein and is weakly pathogenic in mice. Here, we focused on new markers for virulence in mammals. A mouse-adapted H9N2 virus was serially passaged in mice by infecting their lungs. As expected, infected mice showed clinical symptoms and died at passage six. A comparison between the wild-type and mouse-adapted virus sequences identified amino acid substitutions in the hemagglutinin (HA) protein. H9N2 viruses with the T187P ?+ ?M227L double mutation exhibited an increased affinity to human-type (SAα2,6Gal) receptors and significantly enhanced viral attachment to mouse lung tissues, which contributed to enhancing viral replication and virulence in mice. Additionally, HA with the T187P ?+ ?M227L mutation enabled H9N2 viral transmission in guinea pigs via direct contact. AIV pathogenicity in mice is a polygenic trait. Our results demonstrated that these HA mutations might be combined with PB2-627K to significantly increase H9N2 virulence in mice, and this enhanced virulence was achieved in other H9N2 AIVs by generating the same combination of mutations. In summary, our study identified novel key elements in the HA protein that are required for H9N2 pathogenicity in mice and provided valuable insights into pandemic preparedness against emerging H9N2 strains.  相似文献   

8.
Highly pathogenic H5N1 influenza viruses continue to cause concern, even though currently circulating strains are not efficiently transmitted among humans. For efficient transmission, amino acid changes in viral proteins may be required. Here, we examined the amino acids at positions 627 and 701 of the PB2 protein. A direct analysis of the viral RNAs of H5N1 viruses in patients revealed that these amino acids contribute to efficient virus propagation in the human upper respiratory tract. Viruses grown in culture or eggs did not always reflect those in patients. These results emphasize the importance of the direct analysis of original specimens.Given the continued circulation of highly pathogenic H5N1 avian influenza viruses and their sporadic transmission to humans, the threat of a pandemic persists. However, for H5N1 influenza viruses to be efficiently transmitted among humans, amino acid substitutions in the avian viral proteins may be necessary.Two positions in the PB2 protein affect the growth of influenza viruses in mammalian cells (3, 11, 18): the amino acid at position 627 (PB2-627), which in most human influenza viruses is lysine (PB2-627Lys) and most avian viruses is glutamic acid (PB2-627Glu), and the amino acid at position 701. PB2-627Lys is associated with the efficient replication (16) and high virulence (5) of H5N1 viruses in mice. Moreover, an H7N7 avian virus isolated from a fatal human case of pneumonia possessed PB2-627Lys, whereas isolates from a nonfatal human case of conjunctivitis and from chickens during the same outbreak possessed PB2-627Glu (2).The amino acid at position 701 in PB2 is important for the high pathogenicity of H5N1 viruses in mice (11). Most avian influenza viruses possess aspartic acid at this position (PB2-701Asp); however, A/duck/Guangxi/35/2001 (H5N1), which is highly virulent in mice (11), possesses asparagine at this position (PB2-701Asn). PB2-701Asn is also found in equine (4) and swine (15) viruses, as well as some H5N1 human isolates (7, 9). Thus, both amino acids appear to be markers for the adaptation of H5N1 viruses in humans (1, 3, 17).Massin et al. (13) reported that the amino acid at PB2-627 affects viral RNA replication in cultured cells at low temperatures. Recently, we demonstrated that viruses, including those of the H5N1 subtype, with PB2-627Lys (human type) grow better at low temperatures in cultured cells than those with PB2-627Glu (avian type) (6). This association between the PB2 amino acid and temperature-dependent growth correlates with the body temperatures of hosts; the human upper respiratory tract is at a lower temperature (around 33°C) than the lower respiratory tract (around 37°C) and the avian intestine, where avian influenza viruses usually replicate (around 41°C). The ability to replicate at low temperatures may be crucial for viral spread among humans via sneezing and coughing by being able to grow in the upper respiratory organs. Therefore, the Glu-to-Lys mutation in PB2-627 is an important step for H5N1 viruses to develop pandemic potential.However, there is no direct evidence that the substitutions of PB2-627Glu with PB2-627Lys and PB2-701Asp with PB2-701Asn occur during the replication of H5N1 avian influenza viruses in human respiratory organs. Therefore, here, we directly analyzed the nucleotide sequences of viral genes from several original specimens collected from patients infected with H5N1 viruses.  相似文献   

9.
The 2009/2010 pandemic influenza virus (H1N1pdm) contains an avian-lineage PB2 gene that lacks E627K and D701N substitutions important in the pathogenesis and transmission of avian-origin viruses in humans or other mammals. Previous studies have shown that PB2-627K is not necessary because of a compensatory Q591R substitution. The role that PB2-701N plays in the H1N1pdm phenotype is not well understood. Therefore, PB2-D701N was introduced into an H1N1pdm virus (A/New York/1682/2009 (NY1682)) and analyzed in vitro and in vivo. Mini-genome replication assay, in vitro replication characteristics in cell lines, and analysis in the mouse and ferret models demonstrated that PB2-D701N increased virus replication rates and resulted in more severe pathogenicity in mice and more efficient transmission in ferrets. In addition, compared to the NY1682-WT virus, the NY1682-D701N mutant virus induced less IFN-λ and replicated to a higher titer in primary human alveolar epithelial cells. These findings suggest that the acquisition of the PB2-701N substitution by H1N1pdm viruses may result in more severe disease or increase transmission in humans.  相似文献   

10.
Gene mutations and reassortment are key mechanisms by which influenza A virus acquires virulence factors. To evaluate the role of the viral polymerase replication machinery in producing virulent pandemic (H1N1) 2009 influenza viruses, we generated various polymerase point mutants (PB2, 627K/701N; PB1, expression of PB1-F2 protein; and PA, 97I) and reassortant viruses with various sources of influenza viruses by reverse genetics. Although the point mutations produced no significant change in pathogenicity, reassortment between the pandemic A/California/04/09 (CA04, H1N1) and current human and animal influenza viruses produced variants possessing a broad spectrum of pathogenicity in the mouse model. Although most polymerase reassortants had attenuated pathogenicity (including those containing seasonal human H3N2 and high-pathogenicity H5N1 virus segments) compared to that of the parental CA04 (H1N1) virus, some recombinants had significantly enhanced virulence. Unexpectedly, one of the five highly virulent reassortants contained a A/Swine/Korea/JNS06/04(H3N2)-like PB2 gene with no known virulence factors; the other four had mammalian-passaged avian-like genes encoding PB2 featuring 627K, PA featuring 97I, or both. Overall, the reassorted polymerase complexes were only moderately compatible for virus rescue, probably because of disrupted molecular interactions involving viral or host proteins. Although we observed close cooperation between PB2 and PB1 from similar virus origins, we found that PA appears to be crucial in maintaining viral gene functions in the context of the CA04 (H1N1) virus. These observations provide helpful insights into the pathogenic potential of reassortant influenza viruses composed of the pandemic (H1N1) 2009 influenza virus and prevailing human or animal influenza viruses that could emerge in the future.  相似文献   

11.
Pathogenic H7N9 influenza viruses continue to pose a public health concern. The H7N9 virus has caused five outbreak waves of human infections in China since 2013. In the present study, a novel H7N9 strain (A/Guangdong/8H324/2017) was isolated from a female patient with severe respiratory illness during the fifth wave of the 2017 H7N9 epidemic. Phylogenetic analysis showed that the H7N9 viruses collected during the fifth wave belong to two different lineages: the Pearl River Delta lineage and the Yangtze River Delta lineage. The novel isolate is closely related to the Pearl River Delta H7N9 viruses, which were isolated from patients in Guangdong Province. The novel H7N9 isolate has an insertion of three basic amino acids in the cleavage site of hemagglutinin (HA), which may enhance virulence in poultry. The 2017 isolate also possesses an R292K substitution in the neuraminidase (NA) protein, which confers oseltamivir resistance. This study highlights the pandemic potential of the novel H7N9 virus in mammals; thus, future characterization and surveillance is warranted.  相似文献   

12.
Since 2003, more than 380 cases of H5N1 influenza virus infection of humans have been reported. Although the resultant disease in these cases was often severe or fatal, transmission of avian influenza viruses between humans is rare. The precise nature of the barrier blocking human-to-human spread is unknown. It is clear, however, that efficient human-to-human transmission of an antigenically novel influenza virus would result in a pandemic. Influenza viruses with changes at amino acids 627 or 701 of the PB2 protein have been isolated from human cases of highly pathogenic H5 and H7 avian influenza. Herein, we have used the guinea pig model to test the contributions of PB2 627 and 701 to mammalian transmission. To this end, viruses carrying mutations at these positions were generated in the A/Panama/2007/99 (H3N2) and A/Viet Nam/1203/04 (H5N1) backgrounds. In the context of either rPan99 or rVN1203, mutation of lysine 627 to the avian consensus residue glutamic acid was found to decrease transmission. Introduction of an asparagine at position 701, in conjunction with the K627E mutation, resulted in a phenotype more similar to that of the parental strains, suggesting that this residue can compensate for the lack of 627K in terms of increasing transmission in mammals. Thus, our data show that PB2 amino acids 627 and 701 are determinants of mammalian inter-host transmission in diverse virus backgrounds.  相似文献   

13.
It has been shown that not all but most of the avian influenza viruses replicate in the upper respiratory tract of pigs (H. Kida et al., J. Gen. Virol. 75:2183-2188, 1994). It was shown that A/chicken/Yamaguchi/7/2004 (H5N1) [Ck/Yamaguchi/04 (H5N1)] did not replicate in pigs (N. Isoda et al., Arch. Virol. 151:1267-1279, 2006). In the present study, the genetic basis for this host range restriction was determined using reassortant viruses generated between Ck/Yamaguchi/04 (H5N1) and A/swine/Hokkaido/2/1981 (H1N1) [Sw/Hokkaido/81 (H1N1)]. Two in vivo-generated single-gene reassortant virus clones of the H5N1 subtype (virus clones 1 and 2), whose PB2 gene was of Sw/Hokkaido/81 (H1N1) origin and whose remaining seven genes were of Ck/Yamaguchi/04 (H5N1) origin, were recovered from the experimentally infected pigs. The replicative potential of virus clones 1 and 2 was further confirmed by using reassortant virus (rg-Ck-Sw/PB2) generated by reverse genetics. Interestingly, the PB2 gene of Ck/Yamaguchi/04 (H5N1) did not restrict the replication of Sw/Hokkaido/81 (H1N1), as determined by using reassortant virus rg-Sw-Ck/PB2. The rg-Sw-Ck/PB2 virus replicated to moderate levels and for a shorter duration than parental Sw/Hokkaido/81 (H1N1). Sequencing of two isolates recovered from the pigs inoculated with rg-Sw-Ck/PB2 revealed either the D256G or the E627K amino acid substitution in the PB2 proteins of the isolates. The D256G and E627K mutations enhanced viral polymerase activity in the mammalian cells, correlating with replication of virus in pigs. These results indicate that the PB2 protein restricts the growth of Ck/Yamaguchi/04 (H5N1) in pigs.  相似文献   

14.
The single gene reassortant virus that derives its PB2 gene from the avian influenza A/Mallard/NY/78 virus and remaining genes from the human influenza A/Los Angeles/2/87 virus exhibits a host range restriction (hr) phenotype characterized by efficient replication in avian tissue and failure to produce plaques in mammalian Madin-Darby canine kidney cells. The hr phenotype is associated with restriction of viral replication in the respiratory tract of squirrel monkeys and humans. To identify the genetic basis of the hr phenotype, we isolated four phenotypic hr mutant viruses that acquired the ability to replicate efficiently in mammalian tissue. Segregational analysis indicated that the loss of the hr phenotype was due to a mutation in the PB2 gene itself. The nucleotide sequences of the PB2 gene of each of the four hr mutants revealed that a single amino acid substitution at position 627 (Glu-->Lys) was responsible for the restoration of the ability of the PB2 single gene reassortant to replicate in Madin-Darby canine kidney cells. Interestingly, the amino acid at position 627 in every avian influenza A virus PB2 protein analyzed to date is glutamic acid, and in every human influenza A virus PB2 protein, it is lysine. Thus, the amino acid at residue 627 of PB2 is an important determinant of host range of influenza A viruses.  相似文献   

15.
自2013年3月中国首次发现新型禽流感病毒H7N9以来,其于2013-2014年期间发生流行,2015年也有散发性感染。该病毒的流行不仅危及家禽养殖业,还对公共卫生安全造成严重威胁。为调查活禽市场中H7N9的进化史和季节性变化,本研究于2013年7-12月在H7N9主要流行地区之一江苏省苏州市活禽市场采集2 655份鸡、鸭咽拭子样本,对样本中流感病毒核酸进行检测。结果显示,冬季样本中H7N9阳性率显著高于夏季样本,同时发现样本中存在H5、H7和H9亚型毒株之间的混合感染。进一步对H7N9阳性样本的HA、NA和PB2基因序列进行分析,结果表明阳性样本中HA、NA和PB2基因序列与新型H7N9病毒的相应基因序列同源,其在家禽体内传代时也在继续进化。特别是一些样品中PB2基因序列与H5N1病毒PB2基因序列的同源性较高。结果提示,苏州存在一种新型H7N9病毒基因重排的可能性,建议在活禽市场对所有禽流感病毒亚型进行持续监控,从而有助于流感病毒的及时防控。  相似文献   

16.
Ten influenza virus isolates were obtained from infected pigs from different places in Shandong province showing clinical symptoms from October 2002 to January 2003. All 10 isolates were identified in China's National Influenza Research Center as influenza A virus of H9N2 subtype. The complete genome of one isolate, designated A/Swine/Shandong/1/2003(H9N2), was sequenced and compared with sequences available in GenBank. The results of analyses indicated that the sequence of A/Swine/Shandong/1/2003(H9N2) was similar to those of several chicken influenza viruses and duck influenza viruses recently prevalent in South China. According to phylogenetic analysis of the complete gene sequences, A/Swine/Shandong/1/2003(H9N2) possibly originated from the reassortment of chicken influenza viruses and duck influenza viruses. It was found that the amino acid sequence at the HA cleavage site in Sw/SD/1/2003 is R-S-L-R-G, differing clearly from that of other H9N2 subtype isolates of swine influenza and avian influenza, which is R-S-S-R-G.  相似文献   

17.
The polymerase complex proteins (PB2, PB1, and PA) are responsible primarily for the replication of avian influenza virus and play an important role in virus virulence, mammalian adaptation, and interspecies transmission. In this study; eight Egyptian LPAI-H9N2 viruses isolated from apparent healthy chickens and quails from 2014 to 2016. Characterization of complete nucleotide sequences, phylogenetic and mutation analysis were carried out. The measurement of thermodynamic stability of the H9N2 polymerase protein in comparison to human H3N2 and H1N1 proteins was carried out using in silico method. Phylogenetic analysis of these viruses revealed a close relationship to viruses isolated from neighboring Middle Eastern countries with an average of 96–99% homology. They are sharing the common ancestor A/quail/Hong Kong/G1/1997 (G1-Like) without any evidence for genetic reassortment. In addition, eight markers related to virulence were identified, including the combination of 627V and 391E in the PB2 gene with full-length PB1-F2 and PA-X proteins were observed in all viruses and the substitution N66S in PB1-F2 which suggest increasing virus virulence. Moreover, six markers that may affect the virus replication and transmission in mammalian hosts were identified. Five mutations related to mammalian adaptation show a structural stabilizing effect on LPAI-H9N2 polymerase complex protein according to the free-energy change (ΔΔG). Three out of those six adaptive mutations shown to increase polymerase complex protein stability were found in Egyptian LPAI-H9N2 viruses similar to Human H3N2 and H1N1 (661 in PB2, 225 and 409 in PA genes). Our results suggested that the stabilizing mutations in the polymerase complex protein have likely affected the protein structure and induced favorable conditions for avian virus replication and transmission in mammalian hosts. Indeed, the study reports the mutational analysis of the circulating LPAI-H9N2 strains in Egypt.  相似文献   

18.
H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, some of these H9N2 strains replicate efficiently in mice without prior adaptation suggesting that H9N2 strains are expanding their host range. In order to understand the molecular basis of the interspecies transmission of H9N2 viruses, we adapted in the laboratory a wildtype duck H9N2 virus, influenza A/duck/Hong Kong/702/79 (WT702) virus, in quail and chickens through serial lung passages. We carried out comparative analysis of the replication and transmission in quail and chickens of WT702 and the viruses obtained after 23 serial passages in quail (QA23) followed by 10 serial passages in chickens (QA23CkA10). Although the WT702 virus can replicate and transmit in quail, it replicates poorly and does not transmit in chickens. In contrast, the QA23CkA10 virus was very efficient at replicating and transmitting in quail and chickens. Nucleotide sequence analysis of the QA23 and QA23CkA10 viruses compared to the WT702 virus indicated several nucleotide substitutions resulting in amino acid changes within the surface and internal proteins. In addition, a 21-amino acid deletion was found in the stalk of the NA protein of the QA23 virus and was maintained without further modification in the QA23CkA10 adapted virus. More importantly, both the QA23 and the QA23CkA10 viruses, unlike the WT702 virus, were able to readily infect mice, produce a large-plaque phenotype, showed faster replication kinetics in tissue culture, and resulted in the quick selection of the K627 amino acid mammalian-associated signature in PB2. These results are in agreement with the notion that adaptation of H9 viruses to land-based birds can lead to strains with expanded host range.  相似文献   

19.
The 2004 outbreaks of H5N1 influenza viruses in Vietnam and Thailand were highly lethal to humans and to poultry; therefore, newly emerging avian influenza A viruses pose a continued threat, not only to avian species but also to humans. We studied the pathogenicity of four human and nine avian H5N1/04 influenza viruses in ferrets (an excellent model for influenza studies). All four human isolates were fatal to intranasally inoculated ferrets. The human isolate A/Vietnam/1203/04 (H5N1) was the most pathogenic isolate; the severity of disease was associated with a broad tissue tropism and high virus titers in multiple organs, including the brain. High fever, weight loss, anorexia, extreme lethargy, and diarrhea were observed. Two avian H5N1/04 isolates were as pathogenic as the human viruses, causing lethal systemic infections in ferrets. Seven of nine H5N1/04 viruses isolated from avian species caused mild infections, with virus replication restricted to the upper respiratory tract. All chicken isolates were nonlethal to ferrets. A sequence analysis revealed polybasic amino acids in the hemagglutinin connecting peptides of all H5N1/04 viruses, indicating that multiple molecular differences in other genes are important for a high level of virulence. Interestingly, the human A/Vietnam/1203/04 isolate had a lysine substitution at position 627 of PB2 and had one to eight amino acid changes in all gene products except that of the M1 gene, unlike the A/chicken/Vietnam/C58/04 and A/quail/Vietnam/36/04 viruses. Our results indicate that viruses that are lethal to mammals are circulating among birds in Asia and suggest that pathogenicity in ferrets, and perhaps humans, reflects a complex combination of different residues rather than a single amino acid difference.  相似文献   

20.
In June 2013, the first human H6N1 influenza virus infection was confirmed in Taiwan. However, the origin and molecular characterization of this virus, A/Taiwan/2/2013 (H6N1), have not been well studied thus far. In the present report, we performed phylogenetic and coalescent analyses of this virus and compared its molecular profile/characteristics with other closely related strains. Molecular characterization of H6N1 revealed that it is a typical avian influenza virus of low pathogenicity, which might not replicate and propagate well in the upper airway in mammals. Phylogenetic analysis revealed that the virus clusters with A/chicken/Taiwan/A2837/2013 (H6N1) in seven genes, except PB1. For the PB1 gene, A/Taiwan/2/2013 was clustered with a different H6N1 lineage from A/chicken/Taiwan/A2837/2013. Although a previous study demonstrated that the PB2, PA, and M genes of A/Taiwan/2/2013 might be derived from the H5N2 viruses, coalescent analyses revealed that these H5N2 viruses were derived from more recent strains than that of the ancestor of A/Taiwan/2/2013. Therefore, we propose that A/Taiwan/2/2013 is a reassortant from different H6N1 lineages circulating in chickens in Taiwan. Furthermore, compared to avian isolates, a single P186L (H3 numbering) substitution in the hemagglutinin H6 of the human isolate might increase the mammalian receptor binding and, hence, this strain’s pathogenicity in humans. Overall, human infection with this virus seems an accidental event and is unlikely to cause an influenza pandemic. However, its co-circulation and potential reassortment with other influenza subtypes are still worthy of attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号