首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study demonstrates that masking the Feb regions of a monoclonal antibody (Mab) with synthetic antigens prior to covalent immobilization efficiency. Water-soluble adducts of poly(2-methyloxazoline) polymers and a syntheticpeptide epitope for the Mab were constructed. These synthetic antigens are referred to as Fab-masking antigents (FMAs). The antibody used in this study is a Ca(2+)-dependent murine monoclonal lgG directed against the plasma protein, human protein C (hPC). The FMAs were pre-equilibrated with Mab in the presence of calcium prior to immobilization and were then removed by EDTA, which destabilized the FMA-Mab complexes. The antigen binding efficiency and accessibility of the Fab domain of the immobilized antibody was significantly increased for Mab immobilized in the presence of FMA relative to those Mab immobilized without FMA. The increase in binding efficiency was most pronounced for the largest FMA employed. No appreciable differences were detected in the avidity of hPC-Mab complexes formed by immunosorbents produced by either masked or unmaked antibody. These results provide evidence that orientgation may play an important role in the binding activity of immobilized antibodies.  相似文献   

2.
Isocitrate dehydrogenase from Azotobacter vinelandii has been immobilized on Sepharose 4B with an efficiency of between 60 and 75%. The immobilized enzyme is assayed by a flow technique which monitors a final steady state level of product formation. By the assay system described it is estimated that the immobilized enzyme retains between 30 and 40% of the catalytic activity of the free enzyme. Studies have been carried out on the substrate dependence of the enzyme. The enzyme requires magnesium ions with optimal concentrations of 10−3m and above. The dependence on isocitrate and TPN+ concentrations was determined and analyzed by double-reciprocal plots. The immobilized enzyme is inactivated by DTNB [5,5′-dithiobis(2-nitrobenzoic acid)] and reactivated by DTT (dithiothreitol). The DTNB-modified enzyme can be reactivated by potassium cyanide. Comparison of these reactions with those of the free enzyme suggest that the steric environment of the active site was not grossly altered by immobilization. Some supporting evidence is derived from the identity of the energies of activation, 16,600 cal/mole, of free and immobilized enzyme catalyzed oxidation of isocitrate. Furthermore, the immobilized enzyme is inactivated by antibody prepared against the free enzyme. The covalently attached enzyme is resistant to tryptic digestion except in the presence of 2 m urea. This suggests that exposed lysyl residues which may be the primary site of attack by trypsin are utilized in immobilization. Treatment of the enzyme with 2 m urea unfolds the enzyme to a conformation which has very little activity but which recovers full activity upon removal of the urea. Interaction of the enzyme with antibody suggest that the antibody reacts univalently. The second valence can be satisfied by addition of free enzyme. The free enzyme bound to the immobilized enzyme-antibody complex is active. Preliminary attempts to dissociate the enzyme-antibody complexes have been unsuccessful.  相似文献   

3.
Studies were conducted on the depolymerization of polyadenylic acid (poly (A)) by RNAse A (EC 3.1.4.22) depending on the pH (pH 5-8). The results showed that depending on the pH, the ratio Vmax/Km was analogous to that described earlier for nucleoside-2', 3'-cyclophosphates and dinucleoside phosphates. This indicates that depolymerization of poly (A), transesterification and hydrolysis of specific substrates is achieved by the same ionizing groups of the enzyme with pKa 5.4 and pKb 6.4. The rate of degradation of poly (A) is also influenced by the state of adenine ionization, the protonation of which leads to the formation of a double helical poly (A), and does not serve as a substrate for RNAse A. The low rate for the depolymerization of poly (A) in the presence of RNAse A is related to a decrease in the turnover number of the enzyme, and an increase in the molecular weight of the enzyme (RNAse dimer), leads to a decrease in the Km, and does not effect Vmax. This indicates that the rate of depolymerization of polynucleotides is determined by orientation of factors. On the basis of the comparison of the resultant kinetic data, and the structure of the enzyme inhibitory complexes of RNAse S, which were studied by the method of x-ray structural analysis, a conclusion was reached on the kinetic characteristics of RNAse A specificity with respect to polymeric substrates, which is determined by the orinetation of the ribose phosphate relative to the catalytic groups of the active site.  相似文献   

4.
Native and denatured calf thymus DNA, and homopolyribonucleotides were compared with respect to chromium and protein binding after an in vitro incubation with rat liver microsomes, NADPH, and chromium(VI) or chromium(III). A significant amount of chromium bound to DNA when chromium(VI) was incubated with the native or the denatured form of DNA in the presence of microsomes and NADPH. For both native and denatured DNA the amount of protein bound to DNA increased with the amount of chromium bound to DNA. Denatured DNA had much higher amounts of chromium and protein bound than native DNA. There was no interaction between chromium(VI) and either form of DNA in the absence of the complete microsomal reducing system. The binding of chrornium(III) to native or denatured DNA was small and relatively unaffected by the presence of microsomes and NADPH. The binding of chromium and protein to polyriboadenylic acid (poly(A)), polyribocytidylic acid (poly(C), polyri-boguanylic acid (poly(G)) and polyribouridylic acid (poly(U)) was determined after incubation with chromium(VI) in the presence of microsomes and NADPH. The magnitude of chromium and protein binding to the ribo-polymers was found to be poly(G) ? poly(A) ? poly(C) ? poly(U). These results suggest that the metabolism of chromium(VI) is necessary in order for chromium to interact significantly with nucleic acids. The metabolically-produced chromium preferentially binds to the base guanine and results in DNA-protein cross-links. These findings are discussed with respect to the proposed scheme for the carcinogenicity of chromium(VI). Keywords: DNA-protein cross-links — Chromium-guanine interaction-Microsomal reduction of chromate  相似文献   

5.
Antibodies against homogeneous rabbit liver arylsulfatase A (aryl-sulfatase sulfohydrolase, EC 3.1.6.1) were produced in a goat and the effects of these antibodies on the kinetic parameters of the enzyme have been studied. The results indicate that the binding of antibody to the enzyme does not alter the enzyme active site, since Km and -ki values are unaffected. However, a small reduction in the enzyme activity was observed as the result of a reduction of V in the enzyme-antibody complex. The binding of antibodies led to a change in the pH-rate profile, giving one broad pH optimum shifted toward higher pH value. The enzyme-antibody complex still showed the characteristic arylsulfatase A anomalous kinetics at pH 5.5, but the inactivation was significantly slower than for the native enzyme. As calculated from quantitative immuno-precipitation data, the native enzyme bound 5--7 molecules of IgG. The number of IgG molecules which bound to the turnover-modified enzyme was reduced to 3--4. The loss of antigenic determinants from the turnover-modified enzyme indicates that significant conformational changes occur during the turnover-induced modification, or that a covalent modification of residues present at the antigenic sites has occurred, or both.  相似文献   

6.
Rabbit antibody to human prostatic acid phosphatase stabilizes the enzyme activity against thermal inactivation at antigen-antibody equivalents of two or greater. The pH optimum of the enzyme itself and the enzyme-antibody complex varies with different substrates. As the size of the substrate increases the activity of the enzyme alone decreases and antibody inhibition of enzymic activity is enhanced.  相似文献   

7.
Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.  相似文献   

8.
We present a new type of enzyme-antibody conjugate that simplifies the labeling procedure and increases the sensitivity of enzyme-linked immunosorbent assay (ELISA). The conjugates were prepared through layer-by-layer immobilization of enzyme and antibody on a silica nanoparticle scaffold. A maximal amount of enzyme was immobilized on the nanoparticle, followed by antibody linkage through Dextran 500. The conjugate could be easily purified from unreacted reagents by simple centrifugations. In comparison with the conventional antibody-enzyme conjugate used in ELISA, which often has one or two enzyme molecules per antibody, the new type of conjugate contained more enzyme molecules per antibody and provided a much higher signal and increased sensitivity. When used in an ELISA detection of the hepatitis B surface antigen (HBsAg), the detection limit was three times lower than that of the commercially available ELISA kit.  相似文献   

9.
In this work, novel conductive composite nanofiber mesh possessing reactive groups was electrospun from solutions containing poly(acrylonitrile-co-acrylic acid) (PANCAA) and multi-walled carbon nanotubes (MWCNTs) for redoxase immobilization, assuming that the incorporated MWCNTs could behave as electrons transferor during enzyme catalysis. The covalent immobilization of catalase from bovine liver on the neat PANCAA nanofiber mesh or the composite one was processed in the presence of EDC/NHS. Results indicated that both the amount and activity retention of bound catalase on the composite nanofiber mesh were higher than those on the neat PANCAA nanofiber mesh, and the activity increased up to 42%. Kinetic parameters, K(m) and V(max), for the catalases immobilized on the composite nanofiber mesh were lower and higher than those on the neat one, respectively. This enhanced activity might be ascribed to either promoted electron transfer through charge-transfer complexes and the pi system of carbon nanotubes or rendered biocompatibility by modified MWCNTs. Furthermore, the immobilized catalases revealed much more stability after MWCNTs were incorporated into the polymer nanofiber mesh. However, there was no significant difference in optimum pH value and temperature, thermal stability and operational stability between these two immobilized preparations, while the two ones appeared more advantageous than the free in these properties. The effect of MWCNTs incorporation on another redox enzyme, peroxidase, was also studied and it was found that the activity increased by 68% in comparison of composite one with neat preparation.  相似文献   

10.
Substrate specificity of intracellular acid RNAse from Aspergillus clavatus, has been studied using different RNAs, synthetic polynucleotides and diribonucleoside monophosphates as substrates. The enzyme was shown to be a RNAse, non-specific to the chemical nature of bases adjacent to the disrupted phosphodiesther bonds in the molecules of RNA. It has been demonstrated that the order of nucleotide release from RNA coincides with the order of weakening of the enzyme binding to substrates XpY, depending on the base X. Purine bases increase substrates XpY binding with the enzyme and hamper their splitting. The effect of pyrimidine bases on adsorption and catalytic functions of the enzyme is contrary to that of purine bases cited above.  相似文献   

11.
A ribonuclease, purified 2500-fold from human liver, was found to be inactive against synthetic homopolynucleotides, whereas synthetic co-polymers containing adenylic acid were rapidly degraded. The specificity of the RNase is unique in that only purine residues, in a 5:4 ratio of guanylic to adenylic acid, are found at the 5' termini of the degradation products of yeast RNA. No specificity was observed at the 3' termini of the fragments. When analyzed by DEAE-cellulose chromatography, approximately 80% of the oligonucletoides were 4 to 11 residues in length. The hydrolysis of RNA by the liver enzyme, when examined in low ionic strength buffer, could be increased severalfold over control levels by the addition of polyamines. The enzyme was found to exist as two distinct species on sucrose gradients, with molecular weights of 128,000 and 14,000. However, the addition of spermidine to the gradients resulted in the recovery of all the enzyme activity as the smaller species. The polyamines were also shown to reverse the inhibition of the enzyme by the ordered polynucleotides, polyguanylic acid and polyadenylic acid. Inhibition of enzyme activity by the polyadenylic acid segment of various mammalian mRNAs was also demonstrated.  相似文献   

12.
Monoclonal antibodies against human erythrocyte acetylcholinesterase (acetylcholine acetylhydrolase EC 3.1.1.7) have been examined for inhibition of enzyme activity. Of sixteen antibodies analyzed, only one (C1B7) inhibited enzyme activity, indicating selection of an unusual susceptible site. The inhibitory activity of C1B7 was characterized and compared to another inhibitory antibody, AE-2, previously described by Fambrough et al. (Proc. Natl. Acad. Sci. USA 79, 1078, 1982). Maximal demonstrated inhibition was 84% for C1B7 and 72% for AE-2 and antibody inhibition of enzyme activity was equivalent for the reduced and alkylated acetylcholinesterase monomer and the intact dimer. The Ki (stoichiometry of the enzyme-antibody reaction estimated from enzyme kinetics) was 1.0 for C1B7 and 4.8 molecules of antibody per monomer of acetylcholinesterase for AE-2. The antibodies did not compete with one another for binding to acetylcholinesterase, indicating that they have different target epitopes on the enzyme. Antibody binding to the enzyme was not specifically affected by any of the anticholinesterase agents tested: (a) the irreversible esteratic site-directed inhibitor diisopropylfluorophosphate; (b) the reversible active site-directed inhibitors edrophonium, neostigmine, BW284c51, and carbachol; and (c) allosteric site-directed compounds propidium and gallamine. Kinetic analysis of their effects provide evidence that both antibodies decrease the catalytic rate of enzyme activity and have little or no effect on substrate binding.  相似文献   

13.
Horseradish peroxidase is immobilized by a periodate method on the gold surfaces previously modified with 16-mercapto-hexadecanoic acid or with hydrogen disulfide and soybean trypsin inhibitor. The effect of gold surface modification conditions on the immobilization of the enzyme as well as on the properties of the immobilized glycoprotein are studied using surface plasmon resonance technique. Restoration of the ability to bind specific antibodies is demonstrated for the immobilized enzyme. The low level of non-specific antibody binding to the immobilized glycoprotein is also shown.  相似文献   

14.
The structure-based design, synthesis, and screening of a glucuronic acid scaffold library of affinity ligands directed toward the catalytic cleft on porcine pancreas alpha-amylase are presented. The design was based on the simulated docking to the enzyme active site of 53 aryl glycosides from the Available Chemicals Directory (ACD) selected by in silico screening. Twenty-three compounds were selected for synthesis and screened in solution for binding toward alpha-amylase using nuclear magnetic resonance techniques. The designed molecules include a handle outside of the binding site to allow their attachment to various surfaces with minimal loss of binding activity. After initial screening in solution, one affinity ligand was selected, immobilized to Sepharose (Amersham Biosciences), and evaluated as a chromatographic probe. A column packed with ligand-coupled Sepharose specifically retained the enzyme, which could be eluted by a known inhibitor.  相似文献   

15.
A (2′–5′)An synthetase activity was isolated from human placental extracts by affinity chromatography on poly(rI)·poly(rC)-agarose. The oligonucleotide (2′–5′)An was identified by (1) chromatography on PEI-cellulose and DEAE-cellulose, (2) inhibition of polypeptide synthesis in lysed rabbit reticulocytes (3) competition of the binding of pppA(pA)3,3′-[32P]pCp to rabbit reticulocyte lysates, and (4) alkaline phosphatase digestion. The synthetase activity in most placental preparations is activated by natural or synthetic dsRNA. However, in a few placental synthetase preparations, dsRNA is only marginally stimulatory and only becomes effective by prior treatment of the enzyme preparations with the calcium-dependent micrococal nuclease. This suggeststhat there is an endogenous placental dsRNA contaminant in the enzyme preparations. In some synthetase preparations, a second dsRNA-stimulated product, tentatively identified as the nucleotide 5′-IMP, is also observed. Because the specific AMP deaminase inhibitor coformycin (10 μM) blocks the formation of IMP from ATP and causes a quantitative accumulation of AMP, and because the formation of IMp becomes independent of dsRNA when ADP or AMP is used in plase of ATP, the presence of a dsRNA-stimulated ATP phosphohydrolase (ATPase) activity in human placenta is suggested.  相似文献   

16.
The immunological properties of gamma-glutamyltransferases (gamma-GTs) from human serum, liver and tonsil were studied by using a monospecific antibody to human kidney gamma-GT for the purpose of elucidating their isozymic relationships. gamma-GTs partially purified from liver and tonsil were indistinguishable in this respect from kidney gamma-GT. gamma-GT in sera from patients with hepato-biliary diseases, on the other hand, was heterogeneous in molecular size as revealed by sucrose density gradient centrifugation and Sephadex G-150 gel filtration, and was inhibited and precipitated by the above antibody relatively poorly as compared with the kidney enzyme. When these sera were treated with bromelain, however, the molecular size of gamma-GT was reduced and the enzyme now reacted with the antibody as strongly as kidney gamma-GT. gamma-GT from bromelain-treated sera also exhibited a single immunoprecipitin line smoothly fusible with that from kidney gamma-GT; the enzyme-antibody complex still exhibited gamma-GT activity. The major form of gamma-GT partially purified from papain-treated sera, even though indistinguishable from kidney gamma-GT immunologically and in molecular size, exhibited a mobility on polyacrylamide gel electrophoresis which was higher than that of kidney gamma-GT but similar to that of liver gamma-GT. It is suggested that gamma-GT in human sera is heterogeneous in molecular size and electric charge but is composed of common peptide chains, probably identical to those of kidney gamma-GT.  相似文献   

17.
The homogeneous serine hydroxymethyltransferase purified from monkey liver, by the use of Blue Sepharose affinity chromatography, exhibited positive homotropic co-operative interactions (h = 2.5) with tetrahydrofolate and heterotropic interactions with L-serine and nicotinamide nucleotides. The enzyme had an unusually high temperature optimum of 60 degrees C and was protected against thermal inactivation by L-serine. The allosteric effects were abolished when the monkey liver enzyme was purified by using a heat-denaturation step in the presence of L-serine, a procedure adopted by earlier workers for the purification of this enzyme from mammalian and bacterial sources. The enzyme activity was inhibited completely by N5-methyltetrahydrofolate, N5-formyltetrahydrofolate, dichloromethotrexate, aminopterin and D-cycloserine, whereas methotrexate and dihydrofolate were partial inhibitors. The insoluble monkey liver enzyme-antibody complex was catalytically active and failed to show positive homotropic co-operative interactions with tetrahydrofolate (h = 1) and heterotropic interactions with NAD+. The enzyme showed a higher heat-stability in a complex with its antibody than as the free enzyme. These results highlight the pitfalls in using a heat-denaturation step in the purification of allosteric enzymes.  相似文献   

18.
Abstract

Polylactic acid is an interesting biodegradable and bioabsorbable material, and is produced from lactic acid, either by the direct polycondensation of lactic acid or via the ring-opening polymerization (ROP) of lactide. A future target of it is to improve some of the polyester properties for specific biomedical applications. The biocatalytic ROP of lactide is attractive as a route to polymer synthesis due to its lack of toxic reactants, mild reaction requirements, and recyclability of immobilized enzyme. Therefore, the use of immobilized enzymes is also being investigated.

The aim of this work was to develop a methodology to synthesize high molecular weight polylactic acid via enzymatic ROP method using free enzyme and Candida antarctica lipase B (CALB) immobilized onto chitin and chitosan. The efficiency of the two approaches has been compared, with polymerization kinetics and resulting products fully characterized by FT-IR, NMR, DSC, XRD, and TGA analyses.  相似文献   

19.
A novel immobilization matrix, poly(3-methylthienyl methacrylate)–poly(3-thiopheneacetic acid) (PMTM–PTAA), was synthesized and used for the covalent immobilization of Saccharomyces cerevisiae invertase to produce invert sugar. The immobilization resulted in 87% immobilization efficiency. Optimum conditions for activity were not affected by immobilization and the optimum pH and temperature for both free and immobilized enzyme were found to be 4.5 and 55 °C, respectively. However, immobilized invertase was more stable at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined using the Lineweaver–Burk plot. The Km values were 35 and 38 mM for free and immobilized enzyme, respectively. The Vmax values were 29 and 24 mg glucose/mg enzyme min for free and immobilized enzyme, respectively. Immobilized enzyme could be used for the production of glucose and fructose from sucrose since it retained almost all the initial activity for a month in storage and retained the whole activity in repeated 50 batch reactions.  相似文献   

20.
A streptavidin-biotin system was utilized to prepare an antibody-polyadenylic acid conjugate which was subsequently attached to commercially available magnetic beads, Dynabeads oligo(dT)25. Biotinylated polyadenylic acid was combined with streptavidin and the resulting polyadenylic acid-streptavidin was conjugated with an antibody-biotin derivative. The immobilized antibody-polyadenylic acid conjugate was separated from the reaction mixture by hybridization with complementary oligonucleotide immobilized on the surface of Dynabeads oligo(dT)25. The immobilized antibody-polyadenylic acid can be released from the carrier, utilizing low-ionic-strength buffers. The system is intended to be utilized in cell sorting, using immobilized antibodies against cell surface antigens. Dissociation of antibody-containing conjugate from magnetic beads is essential for the isolation of viable cells via positive cell sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号