首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.

A review of the cell biological and developmental mechanisms of bryophytes, including Physcomitrium patens and Marchantia polymorpha.  相似文献   

2.

Background  

Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects.  相似文献   

3.
The emerging field of evolutionary developmental biology (evo-devo) continues to operate largely under a single paradigm. In this paradigm developmental regulatory genes and processes are compared among a collection of "model organisms" selected primarily on the basis of their historical utility in the study of development. This approach has proven to be extremely informative, revealing an unexpected deep evolutionary conservation among developmental genes and genetic systems. Despite its success, concern has been expressed regarding its limitations. We discuss the "model organism" paradigm in evo-devo research. Based on our interpretation of its limitations, we propose a separate but complementary approach that is centered on "model groups." These groups are selected on the basis of their taxonomic affinity and their relevance to questions of interest to evo-devo biologists. We further discuss the Tetraodontiformes (Teleostei, Pisces) as an example of a "model group" for the evo-devo study of vertebrate skeletal elements.  相似文献   

4.
5.
6.
Embryonic development is underpinned by ~50 core processes that drive morphogenesis, growth, patterning and differentiation, and each is the functional output of a complex molecular network. Processes are thus the natural and parsimonious link between genotype and phenotype and the obvious focus for any discussion of biological change. Here, the implications of this approach are explored. One is that many features of developmental change can be modeled as mathematical graphs, or sets of connected triplets of the general form <noun><verb><noun>. In these, the verbs (edges) are the outputs of the processes that drive change and the nouns (nodes) are the time-dependent states of biological entities (from molecules to tissues). Such graphs help unpick the multi-level complexity of developmental phenomena and may help suggest new experiments. Another comes from analyzing the effect of mutation that lead to tinkering with the dynamic properties of these processes and to congenital abnormalities; if these changes are both inherited and advantageous, they become evolutionary modifications. In this context, protein networks often represents what classical evolutionary genetics sees as genes, and the realization that traits reflect the output processes of complex networks, particularly for growth, patterning and pigmentation, rather than anything simpler clarifies some problems that the evolutionary synthesis of the 1950s has found hard to solve. In the wider context, most processes are used many times in development and cooperate to produce tissue modules (bones, branching duct systems, muscles etc.). Their underlying generative networks can thus be thought of as genomic modules or subroutines.  相似文献   

7.
8.
Viroids are small, circular, noncoding RNAs that currently are known to infect only plants. They also are the smallest self-replicating genetic units known. Without encoding proteins and requirement for helper viruses, these small RNAs contain all the information necessary to mediate intracellular trafficking and localization, replication, systemic trafficking, and pathogenicity. All or most of these functions likely result from direct interactions between distinct viroid RNA structural motifs and their cognate cellular factors. In this review, we discuss current knowledge of these RNA motifs and cellular factors. An emerging theme is that the structural simplicity, functional versatility, and experimental tractability of viroid RNAs make viroid-host interactions an excellent model to investigate the basic principles of infection and further the general mechanisms of RNA-templated replication, intracellular and intercellular RNA trafficking, and RNA-based regulation of gene expression. We anticipate that significant advances in understanding viroid-host interactions will be achieved through multifaceted secondary and tertiary RNA structural analyses in conjunction with genetic, biochemical, cellular, and molecular tools to characterize the RNA motifs and cellular factors associated with the processes leading to systemic infection.  相似文献   

9.
Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and regulation. We wish to ascertain whether we can identify such genes promptly in a comprehensive manner. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates.  相似文献   

10.
Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an ‘NIA-NIH symposium on aging in invertebrate model systems’ at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more ‘basal’ organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity.  相似文献   

11.
12.
Catecholamine systems of retina: a model for studying synaptic mechanisms   总被引:4,自引:0,他引:4  
The retina contains three catecholamine neurotransmitters: dopamine (DA); norepinephrine (NE); and epinephrine (EPI). DA and EPI appear to be associated with separate amacrine neurons that directly participate in the visual process. NE, in contrast, appears to be associated primarily with the sympathetic nerves that innervate the blood vessels of the retina. We present a synopsis of the anatomy, physiology, biochemistry and pharmacology of these retinal neurons. We also suggest that some diseases usually associated with catecholamines of brain may have their counterpart in retina.  相似文献   

13.
Zebrafish offer a unique vertebrate model for research areas such as drug development, disease modeling and other biological exploration. There is significant conservation of genetics and other cellular networks among zebrafish and other vertebrate models, including humans. Here we discuss the recent work and efforts made in different fields of biology to explore the potential of zebrafish. Along with this, we also reviewed the concept of systems biology. A biological system is made up of a large number of components that interact in a huge variety of combinations. To understand completely the behavior of a system, it is important to know its components and interactions, and this can be achieved through a systems biology approach. At the end of the paper we present a concept of integrating zebrafish into the systems biology approach.  相似文献   

14.
15.
G J Bosman  M M Kay 《Blood cells》1988,14(1):19-46
Senescent cell antigen (SCANT) is a "neo antigen" that appears on the surface of normal old cells and initiates IgG binding and cellular removal. To investigate the mechanism by which SCANT is generated from its parent molecule, band 3, we subjected intact human erythrocytes to treatments that have been reported to result in changes in band 3 and/or to mimick aging in vitro. The validity of these treatments as model systems for erythrocyte aging was evaluated using a "red cell aging panel" that provides a biochemical profile of a senescent red cell. Treatments were assessed for their ability to induce in vitro the following changes observed in normal erythrocytes aged in vivo: 1 increased breakdown of band 3 as detected by immunoblotting, 2 decrease in anion transport efficiency as detected with a sulfate self-exchange assay, 3 decrease in total glyceraldehyde 3-phosphate dehydrogenase activity with an increase in membrane-bound activity, and 4 increase in the binding of autologous IgG as detected with a protein A binding assay. Neither incubation with the free radical-generating xanthine oxidase/xanthine system, nor treatment with malondialdehyde, and end product of free radical-initiated lipid (per)oxidation, results in age-specific changes. Loading of the cells with calcium and oxidation with iodate results in increased breakdown of band 3, but does not lead to increased binding of autologous IgG. Only erythrocytes that have been stored for 3-4 weeks show the same structural and functional changes as observed during aging in vivo.  相似文献   

16.
Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species (“sea lettuce”) are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during “green tide” blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.  相似文献   

17.
To develop a sensitive and inducible system to study intestinal biology, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2-M2 under control of the 12.4 kb murine Villin promoter. The newly generated Villin-rtTA2-M2 mice were then bred with the previously developed tetO-HIST1H2BJ/GFP model to assess inducibility and tissue-specificity. Expression of the histone H2B-GFP fusion protein was observed exclusively upon doxycycline induction and was uniformly distributed throughout the intestinal epithelium. The Villin-rtTA2-M2 was also found to drive transgene expression in the developing mouse intestine. Furthermore, we could detect transgene expression in the proximal tubules of the kidney and in a population of alleged gastric progenitor cells. By administering different concentrations of doxycycline, we show that the Villin-rtTA2-M2 system drives transgene expression in a dosage-dependent fashion. Thus, we have generated a novel doxycycline-inducible mouse model, providing a valuable tool to study the effect of different gene dosages on intestinal physiology and pathology.  相似文献   

18.
Lexer C  van Loo M 《Current biology : CB》2006,16(11):R407-R409
Contrasts between related diploid and polyploid taxa can serve as windows into the evolution of sexual systems. A recent study of a moving diploid-polyploid contact zone explores this topic in novel ways.  相似文献   

19.
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology.  相似文献   

20.
Many scientists and philosophers of science are troubled by the relative isolation of developmental from evolutionary biology. Reconciling the science of development with the science of heredity preoccupied a minority of biologists for much of the twentieth century, but these efforts were not corporately successful. Mainly in the past fifteen years, however, these previously dispersed integrating programmes have been themselves synthesized and so reinvigorated. Two of these more recent synthesizing endeavours are evolutionary developmental biology (EDB, or "evo-devo") and developmental systems theory (DST). While the former is a bourgeoning and scientifically well-respected biological discipline, the same cannot be said of DST, which is virtually unknown among biologists. In this review, we provide overviews of DST and EDB, summarize their key tenets, examine how they relate to one another and to the study of epigenetics, and survey the impact that DST and EDB have had (and in future should have) on biological theory and practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号