首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The enzymes involved in the degradation of phenol by a new soil bacterium referred as Pseudomonas sp. strain phDV1 were characterized. The key enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol 2,3-dioxygenase (C23O), was isolated using sucrose density centrifugation and anion exchange chromatography. The purified C23O was detected and identified by absorption spectroscopy and peptide mapping. Further, the Pseudomonas sp. strain phDV1 proteome was monitored under different growth substrate conditions, using glucose or phenol as sole carbon and energy source. Sucrose density centrifugation was used to collect and concentrate the cell fraction exhibiting C23O activity and to reduce the complexity of the total protein mixture. 1-DE Tricine PAGE electrophoresis separation in combination with MALDI-TOF MS was attempted for the identification of the proteins involved in the metabolic pathway. We found a different expression of 19 proteins depending on the growth substrate (phenol or glucose) and 10 were identified as enzymes involved in the phenol degradation.  相似文献   

2.
A eukaryotic catechol 1,2-dioxygenase (1,2-CTD) was produced from a Candida albicans TL3 that possesses high tolerance for phenol and strong phenol degrading activity. The 1,2-CTD was purified via ammonium sulfate precipitation, Sephadex G-75 gel filtration, and HiTrap Q Sepharose column chromatography. The enzyme was purified to homogeneity and found to be a homodimer with a subunit molecular weight of 32,000. Each subunit contained one iron. The optimal temperature and pH were 25°C and 8.0, respectively. Substrate analysis showed that the purified enzyme was a type I catechol 1,2-dioxygenase. This is the first time that a 1,2-CTD from a eukaryote (Candida albicans) has been characterized. Peptide sequencing on fragments of 1,2-CTD by Edman degradation and MALDI-TOF/TOF mass analyses provided information of amino acid sequences for BLAST analysis, the outcome of the BLAST revealed that this eukaryotic 1,2-CTD has high identity with a hypothetical protein, CaO19_12036, from Candida albicans SC5314. We conclude that the hypothetical protein is 1,2-CTD.  相似文献   

3.
Phenol and other monocyclic aromatic compounds (MACs) are highly water-soluble and volatile pollutants that plants are unable to completely degrade. Endophytic bacteria with MAC-degrading ability will facilitate phytoremediation, beneficial to plant survival in contaminated soil. Endophytic bacteria, strains FX1-FX3, and rhizosphere bacteria, strains FX0, FX4, and FX5, were isolated from the root tissue of a corn plant (Zea mays) and the corn rhizosphere near a chemical plant, respectively. The strains FX1-FX5 were able to grow on phenol and reduce phenol concentration, but the strain FX0 was unable to. The strains FX1, FX3, and FX4 were classified as Pseudomonas fluorescens and FX0, FX2, and FX5 as Burkholderia cepacia. The plasmids isolated from the strains FX1-FX5 were found to possess similar traits and to be loaded with a gene encoding the catechol 2, 3-dioxygenase (C23O), a key enzyme in the phenol degradation pathway. Alignment and phylogenetic analysis inferred that in situ horizontal transfer of the C23O gene might have occurred. The horizontal transfer of the C23O gene between endophytic and rhizosphere bacteria was proved by using conjugal matings experiment, in which the transconjugants were found to acquire the plasmid with the C23O gene, able to grow on phenol and degrade phenol.  相似文献   

4.
Phenol- and p-cresol-degrading pseudomonads isolated from phenol-polluted water were analysed by the sequences of a large subunit of multicomponent phenol hydroxylase (LmPH) and catechol 2,3-dioxygenase (C23O), as well as according to the structure of the plasmid-borne pheBA operon encoding catechol 1,2-dioxygenase and single component phenol hydoxylase. Comparison of the carA gene sequences (encodes the small subunit of carbamoylphosphate synthase) between the strains showed species- and biotype-specific phylogenetic grouping. LmPHs and C23Os clustered similarly in P. fluorescens biotype B, whereas in P. mendocina strains strong genetic heterogeneity became evident. P. fluorescens strains from biotypes C and F were shown to possess the pheBA operon, which was also detected in the majority of P. putida biotype B strains which use the ortho pathway for phenol degradation. Six strains forming a separate LmPH cluster were described as the first pseudomonads possessing the Mop type LmPHs. Two strains of this cluster possessed the genes for both single and multicomponent PHs, and two had genetic rearrangements in the pheBA operon leading to the deletion of the pheA gene. Our data suggest that few central routes for the degradation of phenolic compounds may emerge in bacteria as a result of the combination of genetically diverse catabolic genes.  相似文献   

5.
Microbial communities on aerial plant leaves may contribute to the degradation of organic air pollutants such as phenol. Epiphytic bacteria capable of phenol degradation were isolated from the leaves of green ash trees grown at a site rich in airborne pollutants. Bacteria from these communities were subjected, in parallel, to serial enrichments with increasing concentrations of phenol and to direct plating followed by a colony autoradiography screen in the presence of radiolabeled phenol. Ten isolates capable of phenol mineralization were identified. Based on 16S rDNA sequence analysis, these isolates included members of the genera Acinetobacter, Alcaligenes, and Rhodococcus. The sequences of the genes encoding the large subunit of a multicomponent phenol hydroxylase (mPH) in these isolates indicated that the mPHs of the gram-negative isolates belonged to a single kinetic class, and that is one with a moderate affinity for phenol; this affinity was consistent with the predicted phenol levels in the phyllosphere. PCR amplification of genes for catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O) in combination with a functional assay for C23O activity provided evidence that the gram-negative strains had the C12O−, but not the C23O−, phenol catabolic pathway. Similarly, the Rhodococcus isolates lacked C23O activity, although consensus primers to the C12O and C23O genes of Rhodococcus could not be identified. Collectively, these results demonstrate that these leaf surface communities contained several taxonomically distinct phenol-degrading bacteria that exhibited diversity in their mPH genes but little diversity in the catabolic pathways they employ for phenol degradation.  相似文献   

6.
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate μmax 0.33 h−1, metabolic coefficient k = 4.4, yield coefficient Y x/s  = 0.23 and rate of degradation Q = 0.506 h−1. The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5′end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.  相似文献   

7.
A periplasmatic phytate-degrading enzyme from Pantoea agglomerans isolated from soil was purified about 470-fold to apparent homogeneity with a recovery of 16% referred to the phytate-degrading activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 60°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 0.34 mmol/l and kcat = 21 s-1 at pH 4.5 and 37°C. The enzyme exhibited a narrow substrate selectivity. Only phytate and glucose-1-phosphate were identified as good substrates. Since this Pantoea enzyme has a strong preference for glucose-1-phosphate over phytate, under physiological conditions glucose-1-phosphate is its most likely substrate. The maximum amount of phosphate released from phytate by the purified enzyme suggests myo-inositol pentakisphosphate as the final product of enzymatic phytate degradation.  相似文献   

8.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

9.
A 4-chlorophenol (4-CP)-degrading bacterium, strain CPW301, was isolated from soil and identified as Comamonas testosteroni. This strain dechlorinated and degraded 4-CP via a meta-cleavage pathway. CPW301 could also utilize phenol as a carbon and energy source without the accumulation of any metabolites via the same meta-cleavage pathway. When phenol was added as a additional substrate, CPW301 could degrade 4-CP and phenol simultaneously. The addition of phenol greatly accelerated the degradation of 4-CP due to the increased cell mass. The simultaneous degradation of the 4-CP and phenol is useful not only for enhanced cell growth but also for the bioremediation of both compounds, which are normally present in hazardous waste sites as a mixture.  相似文献   

10.
Catechol 2,3-dioxygenase (C23O), an extradiol-type dioxygenase cleaving the aromatic C—C bond at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxy-muconic semialdehyde. Based on a curing experiment, PCR identification, and Southern hybridization, the gene responsible for C23O was localized on a 3.5-kb EcoRI/BamHI fragment and cloned from Pseudomonas aeruginosa ZD 4-3, which was able to degrade both single and bicyclic compounds via a meta-cleavage path-way. A complete nucleotide sequence analysis of the C23O revealed that it has one ORF, which showed a strong overall amino acid similarity to the known gram-negative bacterial mesophilic C23Os. The alignment analysis indicated a distinct difference between the C23O in this study and the 2,3-dihydroxybiphenyl dioxygenases that cleave bicyclic aromatic compounds. The heterogeneous expression of the pheB gene in E. Coli BL21(DE3) demonstrated that this C23O possesses a meta-cleavage activity.From Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 802–809.Original English Text Copyright © 2004 by Chen, Liu, Zhu, Jin.This article was submitted by the authors in English.  相似文献   

11.
A trypsin inhibitor was isolated from Cassia obtusifolia by ammonium sulfate precipitation, Sepharose 4B-trypsin affinity and Sephadex G-75 chromatography. The inhibitor consisted of a single polypeptide chain with a molecular mass of 19, 812.55 Da. It was stable from pH 2 to 12 for 24 h, whereas it was unstable either above 70°C for 10 min or under reduced conditions. The inhibitor, which inhibited trypsin activity with an apparent Ki of 0.3 μM, had one reactive site involving a lysine residue. The native inhibitor was resistant to pepsin digestion, whereas the heated inhibitor produced 40% degree of susceptibility. The disulfide linkage and lysine residue were important in maintaining its conformation. Partial amino acid sequence of the purified protein showed a high degree of homology with various members of the Kunitz inhibitor family. Moreover, the inhibitor showed significant inhibitory activity against trypsin-like proteases present in the larval midgut on Pieris rapae and could suppress the growth of larvae.  相似文献   

12.
A novel fibrinolytic enzyme from Cordyceps militaris was purified and partially characterized for the first time, which was designated C. militaris fibrinolytic enzyme (CMase). This extracellular enzyme from C. militaris was isolated by ammonium sulphate fraction, and purified to electrophoretic homogeneity using gel filtration chromatography. The apparent molecular mass of the purified enzyme was estimated to be 27.3 kDa by SDS-PAGE. The optimum pH and temperature for the enzyme activity were pH 6.0 and 25 °C, respectively. In the presence of metal ions such as Mg2+ and Fe2+ ions the activity of the enzyme increased, whereas EDTA and Cu2+ ion inhibited the enzyme activity. Interestingly the N-terminal amino acid sequences of the enzyme is extremely similar to those of the trypsin proteinases from insects, and has no significant homology with those of the fibrinolytic enzyme from other medicinal mushroom. In conclusion, C. militaris produces a strong fibrinolytic enzyme CMase and may be considered as a new source for thrombolytic agents.  相似文献   

13.
An aerobic microorganism with an ability to utilize phenol as carbon and energy source was isolated from a hydrocarbon contamination site by employing selective enrichment culture technique. The isolate was identified as Arthrobacter citreus based on morphological, physiological and biochemical tests. This mesophilic organism showed optimal growth at 25°C and at pH of 7.0. The phenol utilization studies with Arthrobacter citreus showed that the complete assimilation occurred in 24 hours. The organism metabolized phenol up to 22 mM concentrations whereas higher levels were inhibitory. Thin layer chromatography, UV spectral and enzyme analysis were suggestive of catechol, as a key intermediate of phenol metabolism. The enzyme activities of phenol hydroxylase and catechol 2,3-dioxygenase in cell free extracts of Arthrobacter citreus were indicative of operation of a meta-cleavage pathway for phenol degradation. The organism had additional ability to degrade catechol, cresols and naphthol. The degradation rates of phenol by alginate and agar immobilized cells in batch fermentations showed continuous phenol metabolism for a period of eight days.  相似文献   

14.
A protein named as levoglucosan kinase (EC 2.7.-.-)was purified to homogeneity from a wild isolated strain of Lipomyces starkeyi YZ-215. The protein was purified approximately 30-fold by conventional ammonium sulphate fractionation followed by Resource Q chromatography and two steps of Superdex 200 chromatography, and its physical and kinetic properties were investigated. The purified enzyme showed a molecular weight of 48 kDa by SDS-PAGE and 47.7 kDa by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), respectively. The enzyme was stable at pH 7–10 and showed maximum activity at 30°C and pH 9.0. Kinetic constants (apparent K m values) for levoglucosan and ATP were 68.6 ± 13.7 mM and 0.68 ± 0.06 mM, respectively. After in-gel digestion by trypsin, three peptides were sequenced and analyzed by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-Q-TOF MS/MS). Data of the amino acid sequences indicated that this protein might be a novel kinase. The purification of levoglucosan kinase from L. starkeyi YZ-215 represented a fundamental step to provide insights into the efficient utilization of cellulosic pyrolysate by bioconversion.  相似文献   

15.
A bacterium capable of utilizing pyrethroid pesticide cypermethrin as sole source of carbon was isolated from soil and identified as a Micrococcus sp. The organism also utilized fenvalerate, deltamethrin, perimethrin, 3-phenoxybenzoate, phenol, protocatechuate and catechol as growth substrates. The organism degraded cypermethrin by hydrolysis of ester linkage to yield 3-phenoxybenzoate, leading to loss of its insecticidal activity. 3-Phenoxybenzoate was further metabolized by diphenyl ether cleavage to yield protocatechuate and phenol as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extracts. Protocatechuate and phenol were oxidized by ortho-cleavage pathway. Thus, the organism was versatile in detoxification and complete mineralization of pyrethroid cypermethrin  相似文献   

16.
The haloalkaliphile Halomonas sp. EF11 can grow on phenol as sole source for carbon and energy, while maintaining an osmotic equilibrium predominantly by adjusting levels of a certain compatible solute. To determine the energy costs of haloadaptation and the fate of substrate-carbon, the strain was grown continuously in an isothermal compensation calorimeter, keeping all conditions constant except salinity. As salinity increased, slight linear reductions in exothermic heat flow and biomass formation occurred, and 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) synthesis increased linearly. However, beyond a certain salinity threshold the stationary phenol concentration increased exponentially, while heat flow fell sharply, indicating intoxication or wash-out. The clear transition point between the phases, where ectoine formation peaked, suggests that calorimetric measurements could be used to control the conversion of growth-inhibiting substrates (like phenol) into ectoine and to optimize the process. Enthalpy balance and chemical determinations revealed acetate and formate were formed as side products when the C/N ratio in the feed was low, while 2-muconic acid semialdehyde and formate were produced when the ratio was high. These findings indicate that phenol assimilation occurs via the meta pathway. However, enzyme assays implied that assimilation occurs via the ortho and meta pathways at a low C/N ratio and exclusively via the meta pathway at a high C/N ratio.Communicated by W.D. Grant  相似文献   

17.
A marine bacterium, X153, was isolated from a pebble collected at St. Anne du Portzic (France). By 16S ribosomal DNA gene sequence analysis, X153 strain was identified as a Pseudoalteromonas sp. close to P. piscicida. The crude culture of X153 was highly active against human pathogenic strains involved in dermatologic diseases, and marine bacteria including various ichthyopathogenic Vibrio strains. The active substance occurred both in bacterial cells and in culture supernatant. An antimicrobial protein was purified to homogeneity by a 4-step procedure using size-exclusion and ion-exchange chromatography. The highly purified P-153 protein is anionic, and sodium dodecylsulfate polyacrylamide gel electrophoresis gives an apparent molecular mass of 87 kDa. The X153 bacterium protected bivalve larvae against mortality, following experimental challenges with ichthyopathogenic Vibrio. Pseudoalteromonas sp. X153 may be useful in aquaculture as a probiotic bacterium.  相似文献   

18.
Succinate:menaquinone oxidoreductase from Corynebacterium glutamicum, a high-G+C, Gram-positive bacterium, was purified to homogeneity. The enzyme contained two heme B molecules and three polypeptides with apparent molecular masses of 67, 29 and 23 kDa, which corresponded to SdhA (flavoprotein), SdhB (iron–sulfur protein), and SdhC (membrane anchor protein), respectively. In non-denaturating polyacrylamide gel electrophoresis, the enzyme migrated as a single band with an apparent molecular mass of 410 kDa, suggesting that it existed as a trimer. The succinate dehydrogenase activity assayed using 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone and 2,6-dichloroindophenol as the electron acceptor was inhibited by 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), and the Dixon plots were biphasic. In contrast, the succinate dehydrogenase activity assayed using phenazine methosulfate and 2,6-dichloroindophenol was inhibited by p-benzoquinone and not by HQNO. These findings suggested that the C. glutamicum succinate:menaquinone oxidoreductase had two quinone binding sites. In the phylogenetic tree of SdhA, Corynebacterium species do not belong to the high-G+C group, which includes Mycobacterium tuberculosis and Streptomyces coelicolor, but are rather close to the group of low-G+C, Gram-positive bacteria such as Bacillus subtilis. This situation may have arisen due to the horizontal gene transfer.  相似文献   

19.
A superoxide dismutase (SOD) gene of Thermoascus aurantiacus var. levisporus, a thermophilic fungus, was cloned, sequenced, and expressed in Pichia pastoris and its gene product was characterized. The coding sequence predicted a 231 residues protein with a unique 35 amino acids extension at the N-terminus indicating a mitochondrial-targeting sequence. The content of Mn was 2.46 μg/mg of protein and Fe was not detected in the purified enzyme. The enzyme was found to be inhibited by NaN3, but not by KCN or H2O2. These results suggested that the SOD in Thermoascus aurantiacus var. levisporus was the manganese superoxide dismutase type. In comparison with other MnSODs, all manganese-binding sites were also conserved in the sequence (H88, H136, D222, H226). The molecular mass of a single band of the enzyme was estimated to be 21.7 kDa. The protein was expressed in tetramer form with molecular weight of 68.0 kDa. The activity of purified protein was 2,324 U/mg. The optimum temperature of the enzyme was 55°C and it exhibited maximal activity at pH 7.5. The enzyme was thermostable at 50 and 60°C and the half-life at 80°C was approximately 40 min.  相似文献   

20.
Parida AK  Mittra B  Das AB  Das TK  Mohanty P 《Planta》2005,221(1):135-140
A significant decrease in the amount of a protein, whose migration in two-dimensional gel electrophoresis corresponds to an apparent molecular mass of 23 kDa and pI=6.5, was observed in leaves of NaCl-treated Bruguiera parviflora (Roxb.) Wt. & Arn. ex Griff. seedlings. This particular salt-sensitive protein, designated as SSP-23, almost disappeared after 45 days of treatment in 400 mM NaCl as compared to untreated seedlings (0 mM NaCl) where the presence of the protein was significant. A polyclonal antibody raised against the 23-kDa protein was used to determine the subcellular localization of this protein in leaves by cross-reaction with proteins from isolated chloroplasts, mitochondria, peroxisomes and cytosol fractions on Western blots. SSP-23 was confirmed to be localized in the cytosol by immunoblotting. The disappearance of SSP-23 as a result of high NaCl treatment suggests that this protein is salt-sensitive and has a possible role in salt adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号