首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Computational methods are rapidly gaining importance in the field of structural biology, mostly due to the explosive progress in genome sequencing projects and the large disparity between the number of sequences and the number of structures. There has been an exponential growth in the number of available protein sequences and a slower growth in the number of structures. There is therefore an urgent need to develop computational methods to predict structures and identify their functions from the sequence. Developing methods that will satisfy these needs both efficiently and accurately is of paramount importance for advances in many biomedical fields, including drug development and discovery of biomarkers. A novel method called fast learning optimized prediction methodology (FLOPRED) is proposed for predicting protein secondary structure, using knowledge-based potentials combined with structure information from the CATH database. A neural network-based extreme learning machine (ELM) and advanced particle swarm optimization (PSO) are used with this data that yield better and faster convergence to produce more accurate results. Protein secondary structures are predicted reliably, more efficiently and more accurately using FLOPRED. These techniques yield superior classification of secondary structure elements, with a training accuracy ranging between 83?% and 87?% over a widerange of hidden neurons and a cross-validated testing accuracy ranging between 81?% and 84?% and a segment overlap (SOV) score of 78?% that are obtained with different sets of proteins. These results are comparable to other recently published studies, but are obtained with greater efficiencies, in terms of time and cost.  相似文献   

2.

Background  

The prediction of the secondary structure of proteins is one of the most studied problems in bioinformatics. Despite their success in many problems of biological sequence analysis, Hidden Markov Models (HMMs) have not been used much for this problem, as the complexity of the task makes manual design of HMMs difficult. Therefore, we have developed a method for evolving the structure of HMMs automatically, using Genetic Algorithms (GAs).  相似文献   

3.
A segment-based approach to protein secondary structure prediction.   总被引:4,自引:0,他引:4  
Amino acid sequence patterns have been used to identify the location of turns in globular proteins [Cohen et al. (1986) Biochemistry 25, 266-275]. We have developed sequence patterns that facilitate the prediction of helices in all helical proteins. Regular expression patterns recognize the component parts of a helix: the amino terminus (N-cap), the core of the helix (core), and the carboxy terminus (C-cap). These patterns recognize the core features of helices with a 95% success rate and the N- and C-capping features with success rates of 56% and 48%, respectively. A metapattern language, ALPPS, coordinates the recognition of turns and helical components in a scheme that predicts the location and extent of alpha-helices. On the basis of raw residue scoring, a 71% success rate is observed. By focusing on the recognition of core helical features, we achieve a 78% success rate. Amended scoring procedures are presented and discussed, and comparisons are made to other predictive schemes.  相似文献   

4.

Background  

Protein secondary structure prediction method based on probabilistic models such as hidden Markov model (HMM) appeals to many because it provides meaningful information relevant to sequence-structure relationship. However, at present, the prediction accuracy of pure HMM-type methods is much lower than that of machine learning-based methods such as neural networks (NN) or support vector machines (SVM).  相似文献   

5.
Wu KP  Lin HN  Chang JM  Sung TY  Hsu WL 《Nucleic acids research》2004,32(17):5059-5065
We develop a knowledge-based approach (called PROSP) for protein secondary structure prediction. The knowledge base contains small peptide fragments together with their secondary structural information. A quantitative measure M, called match rate, is defined to measure the amount of structural information that a target protein can extract from the knowledge base. Our experimental results show that proteins with a higher match rate will likely be predicted more accurately based on PROSP. That is, there is roughly a monotone correlation between the prediction accuracy and the amount of structure matching with the knowledge base. To fully utilize the strength of our knowledge base, a hybrid prediction method is proposed as follows: if the match rate of a target protein is at least 80%, we use the extracted information to make the prediction; otherwise, we adopt a popular machine-learning approach. This comprises our hybrid protein structure prediction (HYPROSP) approach. We use the DSSP and EVA data as our datasets and PSIPRED as our underlying machine-learning algorithm. For target proteins with match rate at least 80%, the average Q3 of PROSP is 3.96 and 7.2 better than that of PSIPRED on DSSP and EVA data, respectively.  相似文献   

6.
GOR V server for protein secondary structure prediction   总被引:3,自引:0,他引:3  
SUMMARY: We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful methods, its online unavailability has been a deterrent to its popularity. Here, we remedy this situation by creating the GOR V server.  相似文献   

7.
A pentapeptide-based method for protein secondary structure prediction   总被引:7,自引:0,他引:7  
We present a new method for protein secondary structure prediction, based on the recognition of well-defined pentapeptides, in a large databank. Using a databank of 635 protein chains, we obtained a success rate of 68.6%. We show that progress is achieved when the databank is enlarged, when the 20 amino acids are adequately grouped in 10 sets and when more pentapeptides are attributed one of the defined conformations, alpha-helices or beta-strands. The analysis of the model indicates that the essential variable is the number of pentapeptides of well-defined structure in the database. Our model is simple, does not rely on arbitrary parameters and allows the analysis in detail of the results of each chosen hypothesis.  相似文献   

8.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained.  相似文献   

9.
Hybrid system for protein secondary structure prediction.   总被引:13,自引:0,他引:13  
We have developed a hybrid system to predict the secondary structures (alpha-helix, beta-sheet and coil) of proteins and achieved 66.4% accuracy, with correlation coefficients of C(coil) = 0.429, C alpha = 0.470 and C beta = 0.387. This system contains three subsystems ("experts"): a neural network module, a statistical module and a memory-based reasoning module. First, the three experts independently learn the mapping between amino acid sequences and secondary structures from the known protein structures, then a Combiner learns to combine automatically the outputs of the experts to make final predictions. The hybrid system was tested with 107 protein structures through k-way cross-validation. Its performance was better than each expert and all previously reported methods with greater than 0.99 statistical significance. It was observed that for 20% of the residues, all three experts produced the same but wrong predictions. This may suggest an upper bound on the accuracy of secondary structure predictions based on local information from the currently available protein structures, and indicate places where non-local interactions may play a dominant role in conformation. For 64% of the residues, at least two experts were the same and correct, which shows that the Combiner performed better than majority vote. For 77% of the residues, at least one expert was correct, thus there may still be room for improvement in this hybrid approach. Rigorous evaluation procedures were used in testing the hybrid system, and statistical significance measures were developed in analyzing the differences among different methods. When measured in terms of the number of secondary structures (rather than the number of residues) that were predicted correctly, the prediction produced by the hybrid system was also better than those of individual experts.  相似文献   

10.
Simple hidden Markov models are proposed for predicting secondary structure of a protein from its amino acid sequence. Since the length of protein conformation segments varies in a narrow range, we ignore the duration effect of length distribution, and focus on inclusion of short range correlations of residues and of conformation states in the models. Conformation-independent and -dependent amino acid coarse-graining schemes are designed for the models by means of proper mutual information. We compare models of different level of complexity, and establish a practical model with a high prediction accuracy.  相似文献   

11.
An algorithm has been developed to improve the success rate in the prediction of the secondary structure of proteins by taking into account the predicted class of the proteins. This method has been called the 'double prediction method' and consists of a first prediction of the secondary structure from a new algorithm which uses parameters of the type described by Chou and Fasman, and the prediction of the class of the proteins from their amino acid composition. These two independent predictions allow one to optimize the parameters calculated over the secondary structure database to provide the final prediction of secondary structure. This method has been tested on 59 proteins in the database (i.e. 10,322 residues) and yields 72% success in class prediction, 61.3% of residues correctly predicted for three states (helix, sheet and coil) and a good agreement between observed and predicted contents in secondary structure.  相似文献   

12.
PHD-an automatic mail server for protein secondary structure prediction   总被引:30,自引:0,他引:30  
By the middle of 1993, >30 000 protein sequences had beenlisted. For 1000 of these, the three-dimensional (tertiary)structure has been experimentally solved. Another 7000 can bemodelled by homology. For the remaining 21 000 sequences, secondarystructure prediction provides a rough estimate of structuralfeatures. Predictions in three states range between 35% (random)and 88% (homology modelling) overall accuracy. Using informationabout evolutionary conservation as contained in multiple sequencealignments, the secondary structure of 4700 protein sequenceswas predicted by the automatic e-mail server PHD. For proteinswith at least one known homologue, the method has an expectedoverall three-state accuracy of 71.4% for proteins with at leastone known homologue (e on 126 unique protein chains).  相似文献   

13.
目前评价蛋白质二级结构预测方法主要考虑预测准确率,并没有充分考虑方法自身参数对方法的影响。本文提出一种新型评价方法,将内在评价与外在评价相结合评价预测方法的优劣。以基于混合并行遗传算法的蛋白质二级结构预测方法为例,通过内在评价,合理选取内在参数——切片长度和组内类别数,有效提高预测准确率,同时,通过外在评价,与其他基于随机算法的蛋白质二级结构预测算法比较和与CASP所提供的结论比较,说明了方法的有效性与正确性,以此验证内在评价和外在评价的客观性、公正性和全面性。  相似文献   

14.
15.
MOTIVATION: Protein secondary structure prediction is an important step towards understanding how proteins fold in three dimensions. Recent analysis by information theory indicates that the correlation between neighboring secondary structures are much stronger than that of neighboring amino acids. In this article, we focus on the combination problem for sequences, i.e. combining the scores or assignments from single or multiple prediction systems under the constraint of a whole sequence, as a target for improvement in protein secondary structure prediction. RESULTS: We apply several graphical chain models to solve the combination problem and show that they are consistently more effective than the traditional window-based methods. In particular, conditional random fields (CRFs) moderately improve the predictions for helices and, more importantly, for beta sheets, which are the major bottleneck for protein secondary structure prediction.  相似文献   

16.
J M Chandonia  M Karplus 《Proteins》1999,35(3):293-306
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.  相似文献   

17.
Si D  Ji S  Nasr KA  He J 《Biopolymers》2012,97(9):698-708
The accuracy of the secondary structure element (SSE) identification from volumetric protein density maps is critical for de-novo backbone structure derivation in electron cryo-microscopy (cryoEM). It is still challenging to detect the SSE automatically and accurately from the density maps at medium resolutions (~5-10 ?). We present a machine learning approach, SSELearner, to automatically identify helices and β-sheets by using the knowledge from existing volumetric maps in the Electron Microscopy Data Bank. We tested our approach using 10 simulated density maps. The averaged specificity and sensitivity for the helix detection are 94.9% and 95.8%, respectively, and those for the β-sheet detection are 86.7% and 96.4%, respectively. We have developed a secondary structure annotator, SSID, to predict the helices and β-strands from the backbone Cα trace. With the help of SSID, we tested our SSELearner using 13 experimentally derived cryo-EM density maps. The machine learning approach shows the specificity and sensitivity of 91.8% and 74.5%, respectively, for the helix detection and 85.2% and 86.5% respectively for the β-sheet detection in cryoEM maps of Electron Microscopy Data Bank. The reduced detection accuracy reveals the challenges in SSE detection when the cryoEM maps are used instead of the simulated maps. Our results suggest that it is effective to use one cryoEM map for learning to detect the SSE in another cryoEM map of similar quality.  相似文献   

18.
Hidden Markov Models (HMMs) are practical tools which provide probabilistic base for protein secondary structure prediction. In these models, usually, only the information of the left hand side of an amino acid is considered. Accordingly, these models seem to be inefficient with respect to long range correlations. In this work we discuss a Segmental Semi Markov Model (SSMM) in which the information of both sides of amino acids are considered. It is assumed and seemed reasonable that the information on both sides of an amino acid can provide a suitable tool for measuring dependencies. We consider these dependencies by dividing them into shorter dependencies. Each of these dependency models can be applied for estimating the probability of segments in structural classes. Several conditional probabilities concerning dependency of an amino acid to the residues appeared on its both sides are considered. Based on these conditional probabilities a weighted model is obtained to calculate the probability of each segment in a structure. This results in 2.27% increase in prediction accuracy in comparison with the ordinary Segmental Semi Markov Models, SSMMs. We also compare the performance of our model with that of the Segmental Semi Markov Model introduced by Schmidler et al. [C.S. Schmidler, J.S. Liu, D.L. Brutlag, Bayesian segmentation of protein secondary structure, J. Comp. Biol. 7(1/2) (2000) 233-248]. The calculations show that the overall prediction accuracy of our model is higher than the SSMM introduced by Schmidler.  相似文献   

19.
20.
In this study we present an accurate secondary structure prediction procedure by using a query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable. Proteins 27:329–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号