首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution structure and hydration of the chimeric duplex [d(CGC)r(aaa)d(TTTGCG)]2, in which the central hybrid segment is flanked by DNA duplexes at both ends, was determined using two-dimensional NMR, simulated annealing and restrained molecular dynamics. The solution structure of this chimeric duplex differs from the previously determined X-ray structure of the analogous B-DNA duplex [d(CGCAAATTTGCG)]2 as well as NMR structure of the analogous A-RNA duplex [r(cgcaaauuugcg)]2. Long-lived water molecules with correlation time τc longer than 0.3 ns were found close to the RNA adenine H2 and H1′ protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA–DNA junction but not with the other two thymines (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA–DNA junction adopts an O4′-endo sugar conformation, while the other DNA residues including 3C in the DNA–RNA junction, adopt C1′-exo or C2′-endo conformations. The exchange rates for RNA C2′-OH were found to be ~520 s–1. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2, which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2 is wider than its B-DNA analog but narrower than that of the A-RNA analog. It was further confirmed by its titration with the minor groove binding drug distamycin. A possible 2:1 binding mode was found by the titration experiments, suggesting that this chimeric duplex contains a wider minor groove than its B-DNA analog but still narrow enough to hold two distamycin molecules. These distinct structural features and hydration patterns of this chimeric duplex provide a molecular basis for further understanding the structure and recognition of DNA·RNA hybrid and chimeric duplexes.  相似文献   

2.
We investigated the thermodynamic stability of double-stranded DNAs with an oxidative DNA lesion, 2-hydroxyadenine (2-OH-Ade), in two different sequence contexts (5′-GA*C-3′ and 5′-TA*A-3′, A* represents 2-OH-Ade). When an A*–N pair (N, any nucleotide base) was located in the center of a duplex, the thermodynamic stabilities of the duplexes were similar for all the natural bases except A (N = T, C and G). On the other hand, for the duplexes with the A*–N pair at the end, which mimic the nucleotide incorporation step, the stabilities of the duplexes were dependent on their sequence. The order of stability is T > G > C >> A in the 5′-GA*C-3′ sequences and T > A > C > G in the 5′-TA*A-3′ sequences. Because T/G/C and T/A are nucleotides incorporated opposite to 2-OH-Ade in the 5′-GA*C-3′ and 5′-TA*A-3′ sequences, respectively, these results agree with the tendency of mutagenic misincorporation of the nucleotides opposite to 2-OH-Ade in vitro. Thus, the thermodynamic stability of the A*–N base pair may be an important factor for the mutation spectra of 2-OH-Ade.  相似文献   

3.
Circular dichroism (CD) spectra and melting temperature (Tm) data for five duplexes containing phosphorothioate linkages were compared with data for four unmodified duplexes to assess the effect of phosphorothioate modification on the structure and stability of DNA. DNA and DNA.RNA duplexes. Nine duplexes were formed by mixing oligomers 24 nt long in 0.15 M K+(phosphate buffer), pH 7.0. Unmodified DNA.DNA and RNA.RNA duplexes were used as reference B-form and A-form structures. The CD spectra of the modified hybrids S-d(AC)12.r(GU)12 and r(AC)12.S-d(GT)12 differed from each other but were essentially the same as the spectra of the respective unmodified hybrids. They were more A-form than B-form in character. CD spectra of duplexes S-d(AC)12.d(GT)12 and d(AC)12.S-d(GT)12 were similar to that of d(AC)12.d(GT)12, except for a reduced long wavelength CD band. Sulfur modifications on both strands of the DNA duplex caused a pronounced effect on its CD spectrum. The order of thermal stability was: RNA.RNA > DNA.DNA > DNA.RNA > S-DNA.DNA > S-DNA. RNA > S-DNA.S-DNA. Phosphorothioation of one strand decreased the melting temperature by 7.8+/-0.6 degrees C, regardless of whether the substitution was in a hybrid or DNA duplex. Thermodynamic parameters were obtained from a multistate analysis of the thermal melting profiles. Interestingly, the destabilizing effect of the phosphorothioate substitution appears to arise from a difference in the entropy upon forming the DNA.DNA duplexes, while the destabilizing effect in the DNA.RNA hybrids appears to come from a difference in enthalpy.  相似文献   

4.
K R Fox 《Nucleic acids research》1992,20(24):6487-6493
The self complementary DNA dodecamers d(CGCGAATTCGCG), d(CGCGTTAACGCG), d(CGCGTATACGCG), d(CGCGATATCGCG), d(CGCAAATTTGCG), d(CGCTTTAAAGCG), d(CGCGGATCCGCG) and d(CGCGGTACCGCG) have been cloned into the Smal site of plasmid pUC19. Radiolabelled polylinker fragments containing these inserts have been digested with nucleases and chemical agents, probing the structure of the central AT base pairs. The sequences AATT and AAATTT are relatively resistant to digestion by DNase I, micrococcal nuclease and hydroxyl radicals, consistent with the suggestion that they possess a narrow minor groove. Nuclease digestion of TTAA is much more even, and comparable to that at mixed sequence DNA. TpA steps in ATAT, TATA and GTAC are cut less well by DNAse I than in TTAA. DNasel cleavage of surrounding bases, especially CpG is strongly influenced by the nature of the central sequence.  相似文献   

5.
Triplex-forming oligodeoxynucleotide 15mers, designed to bind in the antiparallel triple-helical binding motif, containing single substitutions (Z) of the four isomeric αN7-, βN7-, αN9- and βN9-2-aminopurine (ap)-deoxyribonucleosides were prepared. Their association with double-stranded DNA targets containing all four natural base pairs (X-Y) opposite the aminopurine residues was determined by quantitative DNase I footprint titration in the absence of monovalent metal cations. The corresponding association constants were found to be in a rather narrow range between 1.0 × 106 and 1.3 × 108 M–1. The following relative order in Z × X-Y base-triple stabilities was found: Z = αN7ap: T-A > A-T> C-G ~ G-C; Z = βN7ap: A-T > C-G > G-C > T-A; Z = αN9ap: A-T = G-C > T-A > C-G; and Z = βN9ap: G-C > A-T > C-G > T-A.  相似文献   

6.
Abstract

We describe the packing features of the oligonucleotide duplex d(AAATTT)2, as determined by X-ray diffraction. There is little information on sequences that only contain A and T bases. The present structure confirms that these sequences tend to pack as a helical arrangement of stacked oligonucleotides in a B conformation with Watson-Crick hydrogen bonding. Our results demonstrate that the virtual TA base step between stacked duplexes has a negative twist that improves base stacking. This observation is consistent with the low stability of TA base steps in B-form DNA.  相似文献   

7.
We describe the packing features of the oligonucleotide duplex d(AAATTT)2, as determined by X-ray diffraction. There is little information on sequences that only contain A and T bases. The present structure confirms that these sequences tend to pack as a helical arrangement of stacked oligonucleotides in a B conformation with Watson-Crick hydrogen bonding. Our results demonstrate that the virtual TA base step between stacked duplexes has a negative twist that improves base stacking. This observation is consistent with the low stability of TA base steps in B-form DNA.  相似文献   

8.
Molecular beacons are stem–loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2′-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2′-O-methyl and 2′-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2′-O-methyl/RNA > 2′-deoxy/RNA > 2′-deoxy/DNA > 2′-O-methyl/DNA. The improved stability of the 2′-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2′-deoxy molecular beacons and RNA targets. However, the 2′-O-methyl molecular beacons hybridized to RNA more quickly than 2′-deoxy molecular beacons. For the pairs tested, the 2′-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

9.
We have determined the crystal structure of the RNA octamer duplex r(guguuuac)/r(guaggcac) with a tandem wobble pair, G·G/U·U (motif III), to compare it with U·G/G·U (motif I) and G·U/U·G (motif II) and to better understand their relative stabilities. The crystal belongs to the rhombohedral space group R3. The hexagonal unit cell dimensions are a = b = 41.92 Å, c = 56.41 Å, and γ = 120°, with one duplex in the asymmetric unit. The structure was solved by the molecular replacement method at 1.9 Å resolution and refined to a final R factor of 19.9% and Rfree of 23.3% for 2862 reflections in the resolution range 10.0–1.9 Å with F ≥ 2σ(F). The final model contains 335 atoms for the RNA duplex and 30 water molecules. The A-RNA stacks in the familiar head-to-tail fashion forming a pseudo-continuous helix. The uridine bases of the tandem U·G pairs have slipped towards the minor groove relative to the guanine bases and the uridine O2 atoms form bifurcated hydrogen bonds with the N1 and N2 of guanines. The N2 of guanine and O2 of uridine do not bridge the ‘locked’ water molecule in the minor groove, as in motifs I and II, but are bridged by water molecules in the major groove. A comparison of base stacking stabilities of motif III with motifs I and II confirms the result of thermodynamic studies, motif I > motif III > motif II.  相似文献   

10.
The nuclease stability and melting temperatures (Tm) were compared for fully modified oligoribonucleotide sequences containing 2'-fluoro, 2'-O-methyl, 2'-O-propyl and 2'-O-pentyl nucleotides. Duplexes formed between 2' modified oligoribonucleotides and RNA have typical A-form geometry as observed by circular dichroism spectroscopy. Modifications, with the exception of 2'-O-pentyl, were observed to increase the Tm of duplexes formed with complementary RNA. Modified homoduplexes showed significantly higher Tms, with the following Tm order: 2'-fluoro:2'fluoro > 2'-O-propyl:2'-O-propyl > 2'-O-methyl:2'-O- methyl > RNA:RNA > DNA:DNA. The nuclease stability of 2'-modified oligoribonucleotides was examined using snake venom phosphodiesterase (SVPD) and nuclease S1. The stability imparted by 2' modifications was observed to correlate with the size of the modification. An additional level of nuclease stability was present in oligoribonucleotides having the potential for forming secondary structure, but only for 2' modified oligoribonucleotides and not for 2'-deoxy oligoribonucleotides.  相似文献   

11.
Abstract

Thermodynamic parameters for duplex formation were determined from CD melting curves for r(GGACGAGUCC)2 and d(GGACGAGTCC)2, both of which form two consecutive ‘sheared’ A:G base pairs at the center [Katahira et al. (1993) Nucleic Acids Res. 21, 5418–5424; Katahira et al., (1994) Nucleic Acids Res. 22, 2752–27591. The parameters were determined also for r(GGACUAGUCC)2 and d(GGACTAGTCC)2, where the A:G mismatches are replaced by Watson-Crick A:U(T) base pairs. Thermodynamic properties for duplex formation are compared between the sheared and the Watson-Crick base pairs, and between RNA and DNA. Difference in the thermodynamic stability is analyzed and discussed in terms of enthalpy and entropy changes. The characteristic features in CD spectra of RNA and DNA containing the sheared A:G base pairs are also reported.

  相似文献   

12.
In contrast to shorter homologs which only form a single-stranded nucleic acid alpha-helix in acid solution at [Na+]</=0.02 M Na+, d(A-G)20,30 form in addition a parallel-stranded duplex with (A+.A+) and (G.G) base pairs and interstrand dA+...PO2-ionic and dA+NH2... O=P H-bonds. Under conditions where duplex prevails over alpha-helix, the contribution of the base-backbone interactions to stability varies directly with [H+] and inversely with [Na+], just as in poly(A+.A+). These duplexes are characterized by intense circular dichroism and a large cooperative thermally-induced hyperchromic transition that is dependent on oligomer concentration. Dimethylsulfate reactivity of the dG residues indicates G.G and therefore dA+.dA+rather than dA+.G base pairs. At much higher ionic strength (Na+>/=0.2 M) the protonated base-backbone interactions are so weakened that duplex stability becomes increasingly dependent upon H-bonded base pairing and stacking and almost independent of pH. Between pH 6 and 8 this duplex structure is devoid of protonated dA residues and shows positive dependence of T m on ionic strength similar to that of DNA.  相似文献   

13.
Recently, hybrids of RNA and D-arabinonucleic acids (ANA) as well as the 2'-deoxy-2'-fluoro-D-arabinonucleic acid analog (2'F-ANA) were shown to be substrates of RNase H. This enzyme is believed to be involved in the primary mechanism by which antisense oligonucleotides cause a reduction in target RNA levels in vivo. To gain a better understanding of the properties of arabinose based oligonucleotides, we have prepared a series of 2'F-ANA sequences of homopolymeric (A and T) and mixed base composition (A, T, G and C). UV thermal melting and circular dichroic (CD) studies were used to ascertain the thermodynamic stability and helical conformation of 2'F-ANA/RNA and 2'F-ANA/DNA hybrids. It is shown that 2'F-ANA has enhanced RNA affinity relative to that of DNA and phosphorothioate DNA. The 2'-fluoroarabino modification showed favorable pairing to single-stranded DNA also. This is in sharp contrast to ANA, which forms weak ANA/DNA hybrids at best. According to the measured thermodynamic parameters for duplex formation, the increased stability of hybrids formed by 2'F-ANA (e.g., 2'F-ANA/RNA) appears to originate from conformational pre-organization of the fluorinated sugars and a favorable enthalpy of hybridization. In addition, NMR spectroscopy revealed a five-bond coupling between the 2'F and the base protons (H6/H8) of 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides. This observation is suggestive of a through-space interaction between 2'F and H6/H8 atoms. CD experiments indicate that 2'F-ANA/RNA hybrids adopt an 'A-like' structure and show more resemblance to DNA/RNA hybrids than to the pure RNA/RNA duplex. This feature is believed to be an important factor in the mechanism that allows RNase H to discriminate between 2'F-ANA/RNA (or DNA/RNA) and RNA/RNA duplexes.  相似文献   

14.
Selective incorporation of the stereospecifically deuteriated sugar moieties (> 97 atom % 2H enhancements at H2', H2', H3' and H5'/5' sites, approximately 85 atom % 2H enhancement at H4' and approximately 20 atom % 2H enhancement at H1') in DNA and RNA by the 'NMR-window' approach has been shown to solve the problem of the resonance overlap [refs. 1, 2 & 3]. Such specific deuterium labelling gives much improved resolution and sensitivity of the residual sugar proton (i.e. H1' or H4') vicinal to the deuteriated centers (ref. 3). The T2 relaxation time of the residual protons also increases considerably in the partially-deuteriated (shown by underline) sugar residues in dinucleotides [d(CpG), d(GpC), d(ApT), d(TpA)], trinucleotide r(A2'p5'A2'p5'A) and 20-mer DNA duplex 5'd(C1G2C3-G4C5G6C7G8A9A10T11T12C13G14C15G16C17G18C19G20)(2) 3'. The protons with shorter T2 can be filtered away using a number of different NMR experiments such as ROESY, MINSY or HAL. The NOE intensity of the cross-peaks in these experiments includes only straight pathway from H1' to aromatic proton (i-i and i-i + 1) without any spin-diffusion. The volumes of these NOE cross-peaks could be measured with high accuracy as their intensity is 3 to 4 times larger than the corresponding peaks in the fully protonated residues in the normal NOESY spectra. The structural informations thus obtainable from the residual protons in the partially-deuteriated part of the duplex and the fully protonated part in the 'NMR window' can indeed complement each other.  相似文献   

15.
Nakano M  Moody EM  Liang J  Bevilacqua PC 《Biochemistry》2002,41(48):14281-14292
Hairpins play important roles in the function of DNA, forming cruciforms and affecting processes such as replication and recombination. Temperature gradient gel electrophoresis (TGGE) and in vitro selection have been used to isolate thermodynamically stable DNA hairpins from a six-nucleotide random library. The TGGE-selection process was optimized such that known stable DNA tetraloops were recovered, and the selection appears to be exhaustive. In the selection, four families of exceptionally stable DNA loops were identified: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). (Lowercase denotes the closing base pair; N = A, C, G, or T; and B = C, G, or T.) It appears that the known stable d(cGNAg) triloop motif can be embedded into a tetraloop, with the extra nucleotide inserted into either the middle of the loop, d(cGNNAg), or at the 3'-end of the loop, d(cGNABg). For d(cGNNAg) and d(cGNABg), a CG closing base pair was strongly preferred over a GC, with DeltaDeltaG degrees (37) approximately 2 kcal/mol. Members of the two families, d(cCNNGg) and d(gCNNGc), are similar in stability. The loop sequences and closing base pairs identified for exceptionally stable DNA tetraloops show many similarities to those known for exceptionally stable RNA tetraloops. These data provide an expanded set of thermodynamic rules for the formation of tetraloops in DNA.  相似文献   

16.
S Wang  E T Kool 《Nucleic acids research》1994,22(12):2326-2333
We report the synthesis and nucleic acid binding properties of two cyclic RNA oligonucleotides designed to bind single-stranded nucleic acids by pyr.pur.pyr-type triple helix formation. The circular RNAs are 34 nucleotides in size and were cyclized using a template-directed nonenzymatic ligation. To ensure isomeric 3'-5' purity in the ligation reaction, one nucleotide at the ligation site is a 2'-deoxyribose. One circle (1) is complementary to the sequence 5'-A12, and the second (2) is complementary to 5'-AAGAAAGAAAAG. Results of thermal denaturation experiments and mixing studies show that both circles bind complementary single-stranded DNA or RNA substrates by triple helix formation, in which two domains in a pyrimidine-rich circle sandwich a central purine-rich substrate. The affinities of these circles with their purine complements are much higher than the affinities of either the linear precursors or simple Watson-Crick DNA complements. For example, circle 1 binds rA12 (pH 7.0, 10 mM MgCl2, 100 mM NaCl) with a Tm of 48 degrees C and a Kd (37 degrees C) of 4.1 x 10(-9) M, while the linear precursor of the circle binds with a Tm of 34 degrees C and a Kd of 1.2 x 10(-6) M. The complexes of circle 2 are pH-dependent, as expected for triple helical complexes involving C(+)G.C triads, and mixing plots for both circles reveal one-to-one stoichiometry of binding either to RNA or DNA substrates. Comparison of circular RNAs with previously synthesized circular DNA oligonucleotides of the same sequence reveals similar behavior in the binding of DNA, but strikingly different behavior in the binding of RNA. The cyclic DNAs show high DNA-binding selectivity, giving relatively weaker duplex-type binding with complementary RNAs. The relative order of thermodynamic stability for the four types of triplex studied here is found to be DDD >> RRR > RDR >> DRD. The results are discussed in the context of recent reports of strong triplex dependence on RNA versus DNA backbones. Triplex-forming circular RNAs represent a novel and potentially useful strategy for high-affinity binding of RNA.  相似文献   

17.
Hypoxanthine (H), the deamination product of adenine, has been implicated in the high frequency of A to G transitions observed in retroviral and other RNA genomes. Although H·C base pairs are thermodynamically more stable than other H·N pairs, polymerase selection may be determined in part by kinetic factors. Therefore, the hypoxanthine induced substitution pattern resulting from replication by viral polymerases may be more complex than that predicted from thermodynamics. We have examined the steady-state kinetics of formation of base pairs opposite template H in RNA by HIV-RT, and for the incorporation of dITP during first- and second-strand synthesis. Hypoxanthine in an RNA template enhances the k2app for pairing with standard dNTPs by factors of 10–1000 relative to adenine at the same sequence position. The order of base pairing preferences for H in RNA was observed to be H·C >> H·T > H·A > H·G. Steady-state kinetics of insertion for all possible mispairs formed with dITP were examined on RNA and DNA templates of identical sequence. Insertion of dITP opposite all bases occurs 2–20 times more frequently on RNA templates. This bias for higher insertion frequencies on RNA relative to DNA templates is also observed for formation of mispairs at template A. This kinetic advantage afforded by RNA templates for mismatches and pairing involving H suggests a higher induction of mutations at adenines during first-strand synthesis by HIV-RT.  相似文献   

18.
A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T2-biotin·dT-T2 loop. The third base was a biotinylated uracil (UB) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3′ dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3′ end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5′-FITC, or radiolabeled with [γ-33P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45°C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin–target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.  相似文献   

19.
We report herein full details of the preparation of 4′-thiouridine, -cytidine, -adenosine and -guanosine phosphoramidites based on our synthetic protocol via the Pummerer reaction. Fully modified 4′-thioRNAs containing four kinds of 4′-thioribonucleoside units were prepared according to the standard RNA synthesis. The Tm values and thermodynamic parameters of a series of duplexes were determined by UV melting and differential scanning calorimetry (DSC) measurements. The resulting overall order of thermal stabilities for the duplexes was 4′-thioRNA:4′-thioRNA >> 4′-thioRNA:RNA > RNA:RNA > RNA:DNA > 4′-thioRNA:DNA. In addition, it was shown that the dominant factor in the stability of the duplexes consisting of 4′-thioRNA was enthalpic in character. The CD spectra of not only 4′-thioRNA:RNA and 4′-thioRNA:4′-thioRNA but also 4′-thioRNA:DNA were all similar to those of duplexes in the A-conformation. The stability of 4′-thioRNA in human serum was 600 times greater than that of natural RNA. Neither the RNA:RNA nor the 4′-thioRNA:4′-thioRNA duplexes were digested under the same conditions. The first example of a post-modification of an RNA aptamer by 4′-thioribonucleoside units was demonstrated. Full modification of the aptamer thioRNA3 resulted in complete loss of binding activity. In contrast, modifications at positions other than the binding site were tolerated without loss of binding activity. The post-modified RNA aptamer thioRNA5 was thermally stabilized and resistant toward nuclease digestion. The results presented in this paper will, it is hoped, contribute to the development of 4′-thioRNA as a new generation of artificial RNA.  相似文献   

20.
The 50 non-coding bases immediately internal to the telomeric repeats in the two 5′ ends of macronuclear DNA molecules of a group of hypotrichous ciliates are anomalous in composition, consisting of 61% purines and 39% pyrimidines, A>T (ratio of 44:32), and G>C (ratio of 17:7). These ratio imbalances violate parity rule 2, according to which A should equal T and G should equal C within a DNA strand and therefore pyrimidines should equal purines. The purine-rich and base ratio imbalances are in marked contrast to the rest of the non-coding parts of the molecules, which have the theoretically expected purine content of 50%, with A = T and G = C. The ORFs contain an average of 52% purines as a result of bias in codon usage. The 50 bases that flank the 5′ ends of macronuclear sequences in micronuclear DNA (12 cases) consist of ~50% purines. Thus, the 50 bases in the 5′ ends of macronuclear sequences in micronuclear DNA are islands of purine richness in which A>T and G>C. These islands may serve as signals for the excision of macronuclear molecules during macronuclear development. We have found no published reports of coding or non-coding native DNA with such anomalous base composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号