首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Oestradiol injection on Day 10 of pregnancy in rats, resulted in either ovulation or luteinization in 50% of cases on Day 12. Cytological data showed that the number of pituitary LH cells decreased significantly on Day 11 in all oestradiol-treated animals whether responsive or not to oestrogen by ovarian modifications, while the number of pituitary FSH cells only decreased significantly in females with characteristic ovarian signs of preovulation. Bioassay of pituitary FSH confirmed the cytological data. It is concluded that ovulation and luteinization only occurred in the pregnant rat when oestradiol triggered off a synchronous release of LH and FSH.  相似文献   

2.
Immature female rats were infused s.c. continuously over a 60-h period with a partially purified porcine pituitary follicle-stimulating hormone (FSH) preparation having FSH activity 4.2 x NIH-FSH-S1 and luteinizing hormone (LH) activity 0.022 x NIH-LH-S1. High rates of superovulation were observed in rats receiving 1 U FSH/day, with 69 +/- 11 oocytes/rat recovered as cumulus-enclosed oocytes from oviducts on Day 1 (equivalent to the day of estrus). Addition of LH to the FSH, at dosages equivalent to 2.5-100 micrograms/day NIH-LH-S1 equivalents (2.5-100 mU) resulted in a dose-related inhibition of superovulation, reaching a nadir of 15 +/- 7 oocytes recovered from rats receiving 50 mU LH/day together with 1 U FSH/day. At the two highest LH doses, 50 and 100 mU/day, ovulation was advanced so that 12 +/- 3 and 15 +/- 4 oocytes, respectively, were recovered from oviducts of these rats flushed on the morning of Day 0, compared to none in rats infused with FSH alone. Ovarian steroid concentrations (ng/mg) observed on the morning of Day 0 in rats infused with FSH alone were progesterone, 0.50 +/- 0.13; testosterone, 0.16 +/- 0.08; androstenedione, 0.06; and estradiol, 0.23 +/- 0.05. On the morning of Day 1, ovarian progesterone concentrations in rats infused with FSH alone had risen to 3.30 +/- 0.33 ng/mg, whereas concentrations of testosterone, androstenedione, and estradiol, had fallen to essentially undetectable levels. Addition of LH to the FSH infusion resulted in dose-related increases, on Day 0, of all four steroids up to a dosage of 25 mU LH/day. At higher LH dosages, Day 0 ovarian concentrations of androgens and estradiol fell markedly, while progesterone concentrations continued to increase. Histological examination of ovaries revealed increases in the extent of luteinization of granulosa cells in follicles with retained oocytes on both Days 0 and 1 in rats infused with 25 and 50 mU LH/day together with 1 U FSH/day, compared to those observed in rats receiving FSH alone. These findings indicate that the elevated progesterone levels on Day 0 and inhibition of ovulation observed at these LH doses were due to premature luteinization of follicles, thus preventing ovulation. At lower LH doses, no sign (based on histologic or steroidogenic criteria) of premature luteinization was evident, suggesting that the decreased superovulation in these rats was due to decreased follicular maturation and/or increased atresia rather than to luteinization of follicles without ovulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Immature hypophysectomized, estrogen-treated rats were used to study the regulation of luteinization. Particular attention was focused on the potential role of the oocyte in this process. Rats were injected for 2 days with follicle-stimulating hormone (FSH) to stimulate follicular development. Within 48 h following FSH treatment, many follicles became luteinized, as determined by morphometric analysis. This luteinization occurred in the absence of detectable levels of luteinizing hormone (LH). The number of follicles undergoing luteinization was dependent on the FSH dose. In addition, ovulation occurred in some of the animals receiving the highest doses of FSH (3-micrograms or 5-micrograms injections). The majority of follicles undergoing luteinization or ovulation were greater than 400 microns in diameter. Luteinized follicles exhibited positive reactivity for cholesterol side-chain cleavage enzyme, 3 beta-hydroxysteroid dehydrogenase, lipid, and alkaline phosphatase, which was similar to that found in corpora lutea of the cycle. Serum progesterone (P0) and 20 alpha-hydroxypregn-4-en-one levels were elevated in animals with luteinized follicles, especially in those animals that also underwent ovulation. Morphological evaluation of oocytes showed that the majority of luteinized follicles contained a degenerating oocyte. Oocyte degeneration was highly correlated (r = 0.94) to luteinization. These results demonstrate that luteinization and ovulation can occur in the FSH/estrogen-primed hypophysectomized rats in the absence of detectable serum LH. Furthermore, LH-independent luteinization was strongly correlated to degenerative changes in the oocyte. These results provide new evidence to support the concept that the oocyte may be an intraovarian regulator of luteinization.  相似文献   

4.
Immature female rats were infused s.c. continuously over a 60-h period with partially purified porcine pituitary follicle-stimulating hormone (FSH) preparations differing in degree of purity and having widely divergent luteinizing hormone (LH):FSH potency ratios as defined by radioreceptor assays. Rats infused with the more purified FSH preparation (FSH-A) ovulated a mean of 60-85 oocytes per rat on the morning of the third day (Day 1) after FSH infusion was begun (on Day -2). The same total dose of FSH administered as a single s.c. injection or as twice daily injections over the same 60-h period resulted in ovulation in only a minority of treated rats (3/16), with none achieving ovulation rates approaching those of rats infused continuously. High fertilization rates (80% of ovulated oocytes) were observed in superovulated rats joined with fertile males on the evening of the second day of infusion (Day 0). Of the 67 +/- 7 fertilized ova per rat retrieved from oviducts flushed on Day 1, 52 +/- 8, or 80%, were accounted for as morulae or blastocysts recovered when oviducts and uteri were flushed on the morning of Day 5, demonstrating essentially normal developmental rates and high survival rates in reproductive tracts of superovulated females during the preimplantation period. Infusion of rats with the same dose of a less well-purified FSH preparation (FSH-E) containing 20 times as much LH activity, or injection of rats with a superovulatory dose of pregnant mare's serum gonadotropin (PMSG) (40 IU), were much less effective in causing superovulation, with ovulation rates of 17 +/- 6 and 34 +/- 8 oocytes/rat, respectively, compared to 79 +/- 9 oocytes/rat infused with the FSH preparation (FSH-A) containing lower LH activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Indomethacin, an inhibitor of prostaglandin synthesis, blocks ovulation in immature rats pre-treated with pregnant mare serum gonadotropin (PMS), when given either at 0800, 1200 or 1600 hours on the second day after PMS treatment (the equivalent of proestrus in normally cycling adult rats). The drug also blocked ovulation in response to exogenous luteinizing hormone, whether the latter was administered 30 minutes before or 30 minutes after the inhibitor. Luteinization of follicles, and signs of pre-ovulatory progesterone secretion (loss of uterine lumen fluid) were not prevented when the inhibitor was given at 1600 hours, or when exogenous LH was administered in addition to the inhibitor, indicating that the luteinizing and steroidogenesis actions of LH upon the ovary were not completely blocked. When the drug was administered before the “critical period” for LH secretion, follicular luteinization and signs of progesterone secretion were also prevented, suggesting an additional action of indomethacin at the level of the hypothalamic-pituitary axis, inhibiting LH secretion.  相似文献   

6.
The effects of 5 alpha-dihydroprogesterone (5 alpha-DHP) and 3 alpha, 5 alpha-tetrahydroprogesterone (3 alpha, 5 alpha-THP) on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) release were examined in the pregnant mare's serum gonadotropin (PMSG)-primed immature female rat (8 IU PMSG at 28 days of age) maintained in constant light. Control rats kept in 14L:10D conditions exhibited proestrous-like surges of LH and FSH release with peak levels attained at 1800 h on the second day after PMSG treatment. In rats exposed to constant light, the PMSG-induced surges of LH and FSH were not only delayed until 1000 h on the third day after PMSG, resulting in a delay in ovulation, but were also significantly attenuated when compared to the gonadotropin surges that occurred on Day 2 in rats kept under normal light-dark conditions. The administration of 5 alpha-DHP significantly enhanced the release of FSH at 1000 h on Day 3 when compared to constant light-exposed controls, but had no effect on LH. Treatment with 3 alpha, 5 alpha-THP selectively potentiated the release of LH at 1000 h on Day 3 and had an attenuating effect on FSH release on Days 2 and 3. These observations confirm earlier findings in the immature ovariectomized estrogen-primed rat and suggest that 5 alpha-DHP and 3 alpha, 5 alpha-THP may have significant roles in the regulation of FSH and LH secretion.  相似文献   

7.
The purpose of these experiments was to investigate the mechanism of the anovulatory action of antiprogesterone RU486 (RU486) in rats by studying its effects on follicular growth, secretion of gonadotropins and ovarian steroids, and ovulation. Rats with 4-day estrous cycles received injections (s.c.) of either 0.2 ml oil or 0.1, 1, or 5 mg of RU486 at 0800 and 1600 h on metestrus, diestrus, and proestrus. At the same times, they were bled by jugular venipuncture to determine serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17 beta-estradiol (E), and progesterone (P). On the morning of the day after proestrus, ovulation and histological features of the ovary were recorded. Rats from each group were killed on each day of ovarian cycle to assess follicular development. Rats treated similarly were decapitated at the time of the ovulatory LH surge and blood was collected to measure LH. The serum levels of LH increased and those of FSH decreased during diestrus in rats treated with RU486. Neither E nor P levels differed among the groups. Treatment with RU486 caused both a blockade of the ovulation and an increase in ovarian weight in a dose-dependent manner. At the time of the autopsy (the expected day of ovulation), rats treated with 1 mg RU486 had ovaries presenting both normal and post-ovulatory follicles and unruptured luteinized follicles. Rats treated with 5 mg RU486 presented post-ovulatory follicles without signs of luteinization. The number of follicles undergoing atresia increased in rats treated with RU486. Rats treated with 5 mg RU486 exhibited a significant decrease in ovulatory LH release. The mechanism by which RU486 produces the ovulatory impairment in rats seems to be dual: first, by inducing inadequate follicular development at the time of the LH surge and second, by reducing the amount of ovulatory LH released. The physiological events-decreased basal FSH secretion and follicular atresia-that result from use of RU486 cannot be elucidated from these experiments and should be investigated further.  相似文献   

8.
Experiments were designed to determine why copulation in the pregnant rabbit does not terminate pregnancy while treatment with ovulatory doses of luteinizing hormone (LH) human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRH) is known to do so. Pregnant rabbits (Day 8) were mated or were injected with hCG (25 IU/doe) or LHRH (1, 10 micrograms/kg). Serial blood samples were collected over the next 72 h and analyzed for content of LH, follicle-stimulating hormone (FSH) and progesterone. At sacrifice, uteri and ovaries from these animals were examined for viability of the embryos and for signs of recent ovulation. Injection of hCG or LHRH into pregnant animals led to ovulation and to patterns of LH, FSH and progesterone secretion like those which precede ovulation in estrous rabbits. However, mating the pregnant does did not lead to ovulation or to any changes in the circulating hormones. To investigate whether the elevated levels of progesterone during pregnancy were responsible for the dissociation of coitus from ovulation, nonpregnant rabbits were injected with progesterone (2 mg/kg) and then mated or injected with hCG or LHRH. In virtually every respect, the numbers of ovulations and the patterns of hormone secretion in the progesterone-treated, nonpregnant rabbits mimicked those observed in the 8-day pregnant animals; injection of hCG or LHRH caused ovulation and hormonal surges while hCG caused ovulation only. Mating did not lead to ovulation or any change in blood levels of LH, FSH or progesterone. Taken together, the results show that the elevated circulating levels of progesterone, characteristic of pregnancy, are probably responsible for the dissociation of copulation from gonadotropin release in pregnant rabbits.  相似文献   

9.
The dose-effect of 1.5-16 mcg luteinizing hormone (LH) per 100 gm body weight injected in rats at 1100-1200 on proestrus was compared with 30 mg meprobamate given to controls at the same time, on luteinization and ovulation seen in serial ovarian sections. The WII Wistar rats were killed. Luteinization with or without ovulation increased with dose (1.5, 3, 5, 8, and 16 mcg) of LH to a plateau (90%) above the 5 mcg dose, compared with 18% in controls. 2-5 animals in each dose group had preluteinized follicles, characterized by a dissociation of the cumulus oophorus from the granulosa. The absolute frequency of ovulation increased linearly with LH dose, but the frequency of ovulation among rats that luteinized was invariant. The coefficient of ovulation, calculated as the mean incidence of ovulation in relation to the total number of luteinized or preluteinized follicles in each rat, decreased from .769 in controls to .580 in the 3 mcg group, then rose to .916 in the 16 mcg group. Thus, in proestrous rats, low doses of LH induce corpora lutea with retained ova. The threshold dose of LH for luteinization and for ovulation is lower in proestrus than in diestrus II, but varies slightly in different strains of rats.  相似文献   

10.
The effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on ovulation and luteinization in premature and in mature female guinea pigs in different states of the estrous cycle were compared histologically. FSH and LH were administered in a horse pituitary extract (gonadormone, Byla) injected sc, and results were assessed from hematoxylin and eosin-stained serial sections of the ovaries, removed 24 hours later. In premature guinea pigs (mean weight 233 gm) the threshold dose of gonadormone was .1-1 U for luteinization, and results from different seasons did not differ, so experiments were pooled. At .5 U, 17 of 32 (53%) animals had luteinized follicles, compared to 44 of 56 (79%) given 1 U (p.02). Of these luteinized follicles 2 of 17 (12%) animals had ovulated, or .25 (coefficient of ovulation) of luteinized follicles at .1 U, while 10 of 44 (23%) animals ovulated, or .61 of luteinized follicles ovulated at 1 U. 35 or 70 mg atropine S04 per 100 gm body weight did not affect luteinization induced by 1 U gonadormone. In mature guinea pigs (mean weight 415 gm), 2 of 5 U gonadormone at the beginning of vaginal closure caused luteinization, usually with eggs enclosed (pseudopregnancy), or atresia, in more than 1/2 of the animals. On Day 8 after vaginal closure, 7 of 9 (78%) animals had corpora lutea with enclosed eggs, after receiving 1 U gonadormone. On Day 12, 18 of 51 (35%) animals had corpora lutea with enclosed eggs, 12 of 51 (24%) had postovulatory corpora lutea, and 9 of 51 (18%) had both. Atropine S04 again had no effect on luteinization. If the young guinea pigs given .1 U and the mature guinea pigs given 1 U were compared, the frequency of luteinization was 53% and 76%, respectively (p.05); the frequency of ovulation among animals with luteinization was 12% and 23%, respectively (p.01); and the coefficient of ovulation among luteinized follicles was .25 and .78, respectively (p.05). Therefore, degrees of competence can be assigned since mature follicles at the end of the cycle were more responsive than follicles from premature guinea pigs, whose follicles in turn were more responsive than early follicles of mature guinea pigs.  相似文献   

11.
The GnRH antagonist cetrorelix was given during the early (Days 1-5), mid (Days 6-10 or 5-12) or for the entire (Days 1-16) luteal phase of mares to inhibit the secretion of FSH and LH (Day 0=ovulation). Frequent blood sampling from Day 6 to Day 14 was used to determine the precise time-course of the suppression (cetrorelix given Days 6-10). Cetrorelix treatment caused a decrease in FSH and LH concentrations by 8 and 16 h, respectively, and an obliteration of the response to exogenous GnRH given 24h after treatment onset. Treatment never suppressed gonadotropin concentrations to undetectable levels; e.g. frequent sampling showed that the nadirs reached in FSH and LH were 46.2±6% and 33.1±11%, respectively, of pre-treatment concentrations. Daily FSH concentrations were decreased in all treatment groups but daily LH concentrations were lower only when treatment commenced at the beginning of the luteal phase; progesterone concentrations depended on the time of cetrorelix administration, but the changes suggested a role for LH in corpus luteum function. The inter-ovulatory interval was longer than controls when cetrorelix was given in the mid- or for the entire luteal phase, but was unaffected by treatment in the early phase. Nevertheless, in all groups, FSH concentrations were higher (P<0.05 when compared to Day 0, subsequent ovulation) approximately 6-10 days before this next ovulation. This consistent relationship suggests a stringent requirement for a GnRH-induced elevation of FSH above a threshold at, but only at, this time; i.e. approximately 6-10 days before ovulation.  相似文献   

12.
The effect of ethanol (4 g/kg) as well as the role of serotoninergic neurons on the rate of ovulation and plasma LH, FSH and prolactin secretion have been studied in rats at preovulatory periods (18th hour of diestrus). It has been found that administration of ethanol in preovulatory periods decreased the number of ovules per rat (p less than 0.001), the number of ovulating rats and LH levels (p less than 0.001). These effects were accompanied by an increase in prolactin concentration (0.05 greater than p greater than 0.02), which was followed by a diffuse luteinization in the ovarian tissue. These results showed that ethanol had an effect of central depression in preovulatory periods. These effects could be mediated through the hypothalamic releasing factors. Under previous serotonin depletion with p-chlorophenylalanine (PCPA: 300 mg/kg), ethanol caused similar effects on LH and FSH levels as compared with the control group with PCPA. However, prolactin concentration was not increased. These results showed that serotoninergic neurons could be mediated in changes caused by ethanol on prolactin secretion, but do not affect directly in changes caused on LH and FSH secretion.  相似文献   

13.
The effect of altered LH concentrations on the deviation in growth rates between the 2 largest follicles was studied in pony mares. The progestational phase was shortened by administration of PGF2alpha on Day 10 (Day 0=ovulation; n=9) or lengthened by daily administration of 100 mg of progesterone on Days 10 to 30 (n=11; controls, n=10). All follicles > or = 5 mm were ablated on Day 10 in all groups to initiate a new follicular wave. The interovulatory interval was not altered by the PGF2alpha treatment despite a 4-day earlier decrease in progesterone concentrations. Time required for growth of the follicles of the new wave apparently delayed the interval to ovulation after luteolysis. The FSH concentrations of the first post-ablation FSH surge were not different among groups. A second FSH surge with an associated follicular wave began by Day 22 in 7 of 11 mares in the progesterone group and in 0 of 19 mares in the other groups, indicating reduced functional competence of the largest follicle. A prolonged elevation in LH concentrations began on the mean day of wave emergence (Day 11) in the prostaglandin group (19.2 +/- 2.2 vs 9.0 +/- 0.7 ng/mL in controls; P<0.05), an average of 4 d before an increase in the controls. Concentrations of LH in the progesterone group initially increased until Day 14 and then decreased so that by Day 18 the concentrations were lower (P<0.05) than in the control group (12.9 +/- 1.6 vs 20.2 +/- 2.6 ng/mL). Neither the early and prolonged increase nor the early decrease in LH concentrations altered the growth profile of the second-largest follicle, suggesting that LH was not involved in the initiation of deviation. However, the early decrease in LH concentrations in the progesterone group was followed by a smaller (P<0.05) diameter of the largest follicle by Day 20 (26.9 +/- 1.7 mm) than the controls (30.3 +/- 1.7 mm), suggesting that LH was necessary for continued growth of the largest follicle after deviation.  相似文献   

14.
The effect of p-chlorophenylalanine (PCPA: 300 mg/kg) on the rate of ovulation and plasma LH, FSH and prolactin secretion has been studied in rats at preovulatory periods (18th hour of diestrus) and post-ovulatory periods (9th hour of metaestrus). In both experimental groups, results showed that administration of PCPA caused an increase in both prolactin concentration and number of mature ovarian follicles (p less than 0.001). No changes were observed in FSH levels. LH concentration, however, decreased (p less than 0.001) and ovulation became totally inhibited. Rats treated at the 9th hour of metaestrus exhibited a marked luteinization as well as an increased number of corpus luteum in the ovaric tissue (p less than 0.001), whereas those treated at the 18th hour of diestrus underwent no luteinization and merely showed a greater number of mature ovarian follicles (p less than 0.001). PCPA, therefore, seems not to have a double effect on ovulation, LH, FSH, and prolactin secretion regardless of the pre or post-ovulatory periods. Changes observed in the ovaric tissue might be due to an increase in plasma prolactin concentration which appears earlier in the preovulatory than in the post-ovulatory treated animals. This difference may explain the double effect that has been attributed to the ovaric cycle and reproductive behavior.  相似文献   

15.
Radioimmunoassay presented a method of measuring plasma levels of FSH,LH and prolactin in pseudopregnant rats. Plasma prolactin levels doubled 15 minutes following cervical probing (p .01) on the day of estrus. Plasma LH levels were not significantly elevated. Due to the use of ether anesthesia at blood collecting 3 hr before and 15 minutes after stimulation, only 1 of 16 rats developed pseudopregnancy. On Day 4 of pseudopregnancy in rats mated with vasectomized males; plasma LH was lower (p .05) than in normal rats on the first day of diestrus, perhaps due to the suppressive action of ovarian progesterone and some estrogen. FSH was higher than in normal rats (p .05) perhaps due to the lesser sensitivity of FSH to the inhibitory effect of progesterone. Large decidoumata developed by Day 9 in uterine horns traumatized on Day 4 (153 plus or minus 8 mg uterus weight compared to 1510 plus or minus 204 mg). Thus, the corpora remain functional after LH and prolactin are at normal and subnormal levels. On Day 9 plasma prolactin was lower than at Day 1 of diestrus (p .001). Plasma FSH was elevated (p .01). Plasma LH was unchanged. The degree of rise of LH levels 5 days following ovariectomy on Day 4 of psuedopregnancy or on the first day of diestrus was greater in the former group (p .02), perhaps due to rebound of LH from suppression by ovarian steroids. FSH rose equally in both groups. Prolactin remain about the same. Increased prolactin release by the adenohypophysis was briefer than expected.  相似文献   

16.
We determined changes in plasma hormone concentrations in gilts after treatment with a progesterone agonist, Altrenogest (AT), and determined the effect of exogenous gonadotropins on ovulation and plasma hormone concentrations during AT treatment. Twenty-nine cyclic gilts were fed 20 mg of AT/(day X gilt) once daily for 15 days starting on Days 10 to 14 of their estrous cycle. The 16th day after starting AT was designated Day 1. In Experiment 1, the preovulatory luteinizing hormone (LH) surge occurred 5.6 days after cessation of AT feeding. Plasma follicle-stimulating hormone (FSH) increased simultaneously with the LH surge and then increased further to a maximum 2 to 3 days later. In Experiment 2, each of 23 gilts was assigned to one of the following treatment groups: 1) no additional AT or injections, n = 4; 2) no additional AT, 1200 IU of pregnant mare's serum gonadotropin (PMSG) on Day 1, n = 4); 3) AT continued through Day 10 and PMSG on Day 1, n = 5, 4) AT continued through Day 10, PMSG on Day 1, and 500 IU of human chorionic gonadotropin (hCG) on Day 5, n = 5; or 5) AT continued through Day 10 and no injections, n = 5. Gilts were bled once daily on Days 1-3 and 9-11, bled twice daily on Days 4-8, and killed on Day 11 to recover ovaries. Termination of AT feeding or injection of PMSG increased plasma estrogen and decreased plasma FSH between Day 1 and Day 4; plasma estrogen profiles did not differ significantly among groups after injection of PMSG (Groups 2-4). Feeding AT blocked estrus, the LH surge, and ovulation after injection of PMSG (Group 3); hCG on Day 5 following PMSG on Day 1 caused ovulation (Group 4). Although AT did not block the action of PMSG and hCG at the ovary, AT did block the mechanisms by which estrogen triggers the preovulatory LH surge and estrus.  相似文献   

17.
Epiregulin and amphiregulin are growth factors involved in cancer development, but their potential role in signaling in the gonads is still obscure. We report here that basal expression of these growth factors is evident in human granulosa cells obtained from women treated for in vitro fertilization, when examined by RT-PCR using RNA isolated from primary cultures of ovarian granulosa cells. Expression of these factors was elevated concomitantly with elevation of progesterone production in these cells upon stimulation with luteinizing hormone (LH), and to a lesser extent with follicle stimulating hormone (FSH), both essential stimulants for ovulation and luteinization. Epiregulin and amphiregulin gene expression was dose- and time-dependent when measured subsequent to LH stimulation. Moreover, forskolin, which activates adenylate cyclase, was as efficient as LH in stimulating expression of these growth factors. It is suggested that upregulation of the epiregulin and amphiregulin expression is part of the signal transduction pathway which leads to ovulation and luteinization in the human ovary.  相似文献   

18.
The functional and temporal relationships between circulating gonadotropins and ovarian hormones in mares during Days 7-27 (ovulation = Day 0) was studied using control, follicle ablation, and ovariectomy groups (n = 6 mares/group). In the follicle-ablation group, all follicles > or = 6 mm were ablated on Day 7, and every 2 days thereafter, newly emerging follicles were also ablated. Estradiol concentrations decreased (P < 0.01) similarly in the controls and the follicle-ablation group between Days 7 and 11 and by Day 15 began to increase in the controls and continued to decrease in the follicle-ablation group. Concentrations of progesterone were not affected by follicle ablation, but diameter of the corpus luteum was greater (P < 0.05) by Day 21 in the follicle-ablation group; these results indicated that the follicles were involved in morphologic luteolysis, but not in functional luteolysis. Concentrations of LH were higher (P < 0.05) on Days 15 and 16 in the follicle-ablation group than in the controls, indicating an initial negative effect of follicles on LH. Immunoreactive inhibin and estradiol decreased (P < 0.0001) and FSH and LH increased (P < 0.05) within 1 or 2 days after ovariectomy; these changes occurred more slowly in the follicle-ablation group. The maximum value for an FSH surge in each control mare was below the lower 95% confidence limit in the ovariectomy group. Maximum concentration for the periovulatory LH surge in the controls was not different from the mean maximum LH concentrations in the ovariectomy group. Our interpretation is that the gonadotropin surges resulted from changes in the magnitude of the negative effects of ovarian hormones on the positive effects of extraovarian control. There was no indication of a positive ovarian effect on either FSH or LH.  相似文献   

19.
Prepubertal ewe lambs were treated with FSH after progesterone priming for 12 days (Group P), monensin supplementation for 14 days (Group M) or a standard diet (Group C). Serial blood samples were taken for LH and progesterone assay, and ovariectomy was performed on half of each group 38-52 h after start of treatment to assess ovarian function, follicular steroid production in vitro and the concentration of gonadotrophin binding sites in follicles. The remaining ewe lambs were ovariectomized 8 days after FSH treatment to determine whether functional corpora lutea were present. FSH treatment was followed by a preovulatory LH surge which occurred significantly later (P less than 0.05) and was better synchronized in ewes in Groups P and M than in those in Group C. At 13-15 h after the LH surge significantly more large follicles were present on ovaries from Group P and M ewes than in Group C. Follicles greater than 5 mm diameter from ewes in Groups P and M produced significantly less oestrogen and testosterone and more dihydrotestosterone, and had significantly more hCG binding sites, than did similar-sized follicles from Group C animals. Ovariectomy on Day 8 after the completion of FSH treatment showed that ewes in Groups P and M had significantly greater numbers of functional corpora lutea. These results indicate that, in prepubertal ewes, progesterone priming and monensin supplementation may delay the preovulatory LH surge, allowing follicles developing after FSH treatment more time to mature before ovulation. This may result in better luteinization of ruptured follicles in these ewes, with the formation of functional corpora lutea.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号