共查询到20条相似文献,搜索用时 32 毫秒
1.
Background
Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery. 相似文献2.
Chityal Ganesh Kumar Suman Kumar Mamidyala Pombala Sujitha Hemalatha Muluka Surekha Akkenapally 《Biotechnology progress》2012,28(6):1507-1516
Eleven biosurfactant producing bacteria were isolated from different petroleum‐contaminated soil and sludge samples. Among these 11 isolates, two were identified as promising, as they reduced the surface tension of culture medium to values below 27 mN m?1. Besides biosurfactant production property, they exhibited good flocculating activity. Microbacterium sp. was identified as a new addition to the list of biosurfactant and bioflocculant‐producers. Optimization of various conditions for rhamnolipid production was carried out for one of the promising isolate, Pseudomonas aeruginosa BS‐161R. Bioglycerol (2.5%), as a cheap renewable carbon source, attained better rhamnolipid yield, while sodium nitrate appeared to be the preferable nitrogen source. The optimum carbon to nitrogen (C/N) and carbon to iron (C/Fe) ratios achieved were 15 and 28,350, respectively, which favored rhamnolipid production. Physical parameters like pH, temperature, and agitation speed also affected the production of rhamnolipids. Results from shake flask optimization indicated that the concentration of bioglycerol, sodium nitrate, and iron were the most significant factors affecting rhamnolipid production, which was supported by the results of central composite rotatable design. After optimization of the culture conditions, the production of rhamnolipids increased by ninefold from 0.369 to 3.312 g L?1. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012 相似文献
3.
Romero, Ethel M. (Universidad Nacional de la Plata, La Plata, Argentina), and Rodolfo M. Brenner. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol. 91:183-188. 1966.-The lipids extracted from Pseudomonas aeruginosa incubated with hexadecane in a mineral medium were separated into a nonpolar and three polar fractions by thin-layer chromatography. The fatty acid composition of the four cellular fractions and that of the lipids excreted into the medium was studied by gas-liquid chromatography. Saturated fatty acids with 14 to 22 carbons were recognized, together with monoenoic, dienoic, and hydroxylated acids. Hydroxylated fatty acids were principally found in two polar fractions containing rhamnose and glucose; the other polar fraction, containing serine, alanine, ethanolamine, and leucine, was richer in monoenoic fatty acids. Octadecadienoic acid was found in the neutral fraction. 相似文献
4.
5.
Morris JD Hewitt JL Wolfe LG Kamatkar NG Chapman SM Diener JM Courtney AJ Leevy WM Shrout JD 《Applied and environmental microbiology》2011,77(23):8310-8317
Many bacteria spread over surfaces by "swarming" in groups. A problem for scientists who study swarming is the acquisition of statistically significant data that distinguish two observations or detail the temporal patterns and two-dimensional heterogeneities that occur. It is currently difficult to quantify differences between observed swarm phenotypes. Here, we present a method for acquisition of temporal surface motility data using time-lapse fluorescence and bioluminescence imaging. We specifically demonstrate three applications of our technique with the bacterium Pseudomonas aeruginosa. First, we quantify the temporal distribution of P. aeruginosa cells tagged with green fluorescent protein (GFP) and the surfactant rhamnolipid stained with the lipid dye Nile red. Second, we distinguish swarming of P. aeruginosa and Salmonella enterica serovar Typhimurium in a coswarming experiment. Lastly, we quantify differences in swarming and rhamnolipid production of several P. aeruginosa strains. While the best swarming strains produced the most rhamnolipid on surfaces, planktonic culture rhamnolipid production did not correlate with surface growth rhamnolipid production. 相似文献
6.
H E Reiling U Thanei-Wyss L H Guerra-Santos R Hirt O K?ppeli A Fiechter 《Applied and environmental microbiology》1986,51(5):985-989
Rhamnolipid biosurfactants were continuously produced with Pseudomonas aeruginosa on the pilot plant scale. Production and downstream processing elaborated on the laboratory scale were adapted to the larger scale. Differences in performance resulting from the scale-up are discussed. A biosurfactant concentration of approximately 2.25 g liter-1 was achieved. The biosurfactant yield on glucose was 77 mg g-1 h-1, and the productivity was 147 mg liter-1 h-1, corresponding to a daily production of 80 g of biosurfactant. The first enrichment step consisted of an adsorption chromatography which was followed by an anion-exchange chromatography. The resulting product was 90% pure, and the overall recovery of active material was above 60% with the downstream processing used. 相似文献
7.
Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms 总被引:5,自引:0,他引:5
Pseudomonas aeruginosa biofilms can develop mushroom-like structures with stalks and caps consisting of discrete subpopulations of cells. Self-produced rhamnolipid surfactants have been shown to be important in development of the mushroom-like structures. The quorum-sensing-controlled rhlAB operon is required for rhamnolipid synthesis. We have introduced an rhlA-gfp fusion into a neutral site in the P. aeruginosa genome to study rhlAB promoter activity in rhamnolipid-producing biofilms. Expression of the rhlA-gfp fusion in biofilms requires the quorum-sensing signal butanoyl-homoserine lactone, but other factors are also required for expression. Early in biofilm development rhlA-gfp expression is low, even in the presence of added butanoyl-homoserine lactone. Expression of the fusion becomes apparent after microcolonies with a depth of >20 mum have formed and, as shown by differential labeling with rfp or fluorescent dyes, rhlA-gfp is preferentially expressed in the stalks rather than the caps of mature mushrooms. The rhlA-gfp expression pattern is not greatly influenced by addition of butanoyl-homoserine lactone to the biofilm growth medium. We propose that rhamnolipid synthesis occurs in biofilms after stalks have formed but prior to capping in the mushroom-like structures. The differential expression of rhlAB may play a role in the development of normal biofilm architecture. 相似文献
8.
Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. 总被引:4,自引:1,他引:3 下载免费PDF全文
H E Reiling U Thanei-Wyss L H Guerra-Santos R Hirt O Kppeli A Fiechter 《Applied microbiology》1986,51(5):985-989
Rhamnolipid biosurfactants were continuously produced with Pseudomonas aeruginosa on the pilot plant scale. Production and downstream processing elaborated on the laboratory scale were adapted to the larger scale. Differences in performance resulting from the scale-up are discussed. A biosurfactant concentration of approximately 2.25 g liter-1 was achieved. The biosurfactant yield on glucose was 77 mg g-1 h-1, and the productivity was 147 mg liter-1 h-1, corresponding to a daily production of 80 g of biosurfactant. The first enrichment step consisted of an adsorption chromatography which was followed by an anion-exchange chromatography. The resulting product was 90% pure, and the overall recovery of active material was above 60% with the downstream processing used. 相似文献
9.
Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa 下载免费PDF全文
Recent studies have indicated that biosurfactants produced by Pseudomonas aeruginosa play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. Through the use of flow cell technology and enhanced confocal laser scanning microscopy, we have obtained results which suggest that the biosurfactants produced by P. aeruginosa play additional roles in structural biofilm development. We present genetic evidence that during biofilm development by P. aeruginosa, biosurfactants promote microcolony formation in the initial phase and facilitate migration-dependent structural development in the later phase. P. aeruginosa rhlA mutants, deficient in synthesis of biosurfactants, were not capable of forming microcolonies in the initial phase of biofilm formation. Experiments involving two-color-coded mixed-strain biofilms showed that P. aeruginosa rhlA mutants were defective in migration-dependent development of mushroom-shaped multicellular structures in the later phase of biofilm formation. Experiments involving three-color-coded mixed-strain P. aeruginosa biofilms demonstrated that the wild-type and rhlA and pilA mutant strains formed distinct subpopulations on top of each other dependent on their ability to migrate and produce biosurfactants. 相似文献
10.
Sobern-Chvez Gloria Aguirre-Ramrez Marisela Snchez Rosalba 《Journal of industrial microbiology & biotechnology》2005,32(11):675-677
Pseudomonas aeruginosa produces the biosurfactant rhamnolipid, which has several potential biotechnological applications. The synthesis of this surfactant is catalyzed by rhamnosyltransferase 1, composed of the proteins RhlA and RhlB. Here we report that RhlA plays a role not only in surfactant synthesis, but also in the production of polyhydroxyalkanoates, polymers that can be used for the synthesis of biodegradable plastics.
相似文献11.
12.
Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa 总被引:2,自引:0,他引:2 下载免费PDF全文
To circumvent the permeability barrier of its outer membrane, Pseudomonas aeruginosa has evolved a series of specific porins. These channels have binding sites for related classes of molecules that facilitate uptake under nutrient-limited conditions. Here, we report on the identification of a 19-member family of porins similar to the basic-amino-acid-specific porin OprD. The members of this family fell into one of two phylogenetically distinct clusters, one bearing high similarity to OprD and the other bearing most similarity to the putative phenylacetic acid uptake porin PhaK of Pseudomonas putida. Analysis of the genome context, operon arrangement, and regulation of the PhaK-like porin OpdK indicated that it might be involved in vanillate uptake. This result was confirmed by demonstrating that an opdK mutant had a deficiency in the ability to grow on vanillate as a carbon source. To extrapolate these data to other paralogues within this family, the substrate specificities of 6 of the 17 remaining OprD homologues were inferred using an approach similar to that used with opdK. The specificities determined were as follows: OpdP, glycine-glutamate; OpdC, histidine; OpdB, proline; OpdT, tyrosine; OpdH, cis-aconitate; and OpdO, pyroglutamate. Thus, members of the OprD subfamily took up amino acids and related molecules, and those characterized members most similar to PhaK were responsible for the uptake of a diverse array of organic acids. These results imply that there is a functional basis for the phylogenetic clustering of these proteins and provide a framework for studying OprD homologues in other organisms. 相似文献
13.
Soberón-Chávez G Aguirre-Ramírez M Sánchez R 《Journal of industrial microbiology & biotechnology》2005,32(11-12):675-677
Pseudomonas aeruginosa produces the biosurfactant rhamnolipid, which has several potential biotechnological applications. The synthesis of this surfactant is catalyzed by rhamnosyltransferase 1, composed of the proteins RhlA and RhlB. Here we report that RhlA plays a role not only in surfactant synthesis, but also in the production of polyhydroxyalkanoates, polymers that can be used for the synthesis of biodegradable plastics. 相似文献
14.
Vasileva-Tonkova E Galabova D Stoimenova E Lalchev Z 《Zeitschrift für Naturforschung. C, Journal of biosciences》2006,61(7-8):553-559
The newly isolated from industrial wastewater Pseudomonas fluorescens strain HW-6 produced glycolipid biosurfactants at high concentrations (1.4-2.0 g l(-1)) when grown on hexadecane as a sole carbon source. Biosurfactants decreased the surface tension of the air/ water interface by 35 mN m(-1) and possessed a low critical micelle concentration value of 20 mg l(-1), which indicated high surface activity. They efficiently emulsified aromatic hydrocarbons, kerosene, n-paraffins and mineral oils. Biosurfactant production contributed to a significant increase in cell hydrophobicity correlated with an increased growth of the strain on hexadecane. The results suggested that the newly isolated strain of Ps. fluorescens and produced glycolipid biosurfactants with effective surface and emulsifying properties are very promising and could find application for bioremediation of hydrocarbon-polluted sites. 相似文献
15.
The Pseudomonas genus belongs to the γ division of Proteobacteria and many species produce the characteristic yellow–green siderophore pyoverdine,
and often a second siderophore, of lower affinity for iron. These bacteria are known for their ability to colonize different
ecological niches and for their versatile metabolism. It is therefore not surprising that they are endowed with the capacity
to take up exogenous xenosiderophores via different TonB-dependent receptors. Uptake of iron is controlled by the central
regulator Fur, and via extracytoplasmic sigma factors or other types of regulators (two-component systems, AraC regulators).
In this review the Fur regulon (experimentally proven and/or predicted) of P. aeruginosa will be presented. An interesting feature revealed by this analysis of Fur-regulated genes is the overlap between the iron
and the sulfur regulons as well with the quorum sensing system. 相似文献
16.
17.
Rhamnolipids, produced by Pseudomonas aeruginosa, represent an important group of biosurfactants having various industrial, environmental, and medical applications. Current
methods for rhamnolipid quantification involve the use of strong hazardous acids/chemicals, indirect measurement of the concentration
of sugar moiety, or require the availability of expensive equipment (HPLC-MS). A safer, easier method that measures the whole
rhamnolipid molecules would significantly enhance strain selection, metabolic engineering, and process development for economical
rhamnolipid production. A semi-quantitative method was reported earlier to differentiate between the rhamnolipid-producing
and non-producing strains using agar plates containing methylene blue and cetyl trimethylammonium bromide (CTAB). In this
study, a rapid and simple method for rhamnolipid analysis was developed by systematically investigating the complexation of
rhamnolipids and methylene blue, with and without the presence of CTAB. The method relies on measuring the absorbance (at
638 nm) of the rhamnolipid−methylene blue complex that partitions into the chloroform phase. With P. aeruginosa fermentation samples, the applicability of this method was verified by comparison of the analysis results with those obtained
from the commonly used anthrone reaction technique. 相似文献
18.
铜绿假单胞菌铁摄取与生物被膜形成研究进展 总被引:1,自引:0,他引:1
生物被膜是单细胞微生物通过其分泌的胞外多聚基质粘附于介质表面并将其自身包绕其中而成的膜样微生物细胞聚集物。生物被膜的形成使细菌具有更强的适应外界环境的能力,也是导致微生物产生耐药性及慢性感染性疾病难以治疗的重要原因之一。铜绿假单胞菌在肺部的定殖是肺囊性纤维化病患者发病和死亡主要原因,其造成的感染通常与形成抗生素抗性极强的生物被膜有关。铜绿假单胞菌生物被膜的形成受控于多种复杂的细菌调控体系之下,包括群体感应系统及参与调节胞外多聚基质合成的双组分调控系统等。此外,为了利用低浓度的环境铁来维持生存并完成各种生理功能,铜绿假单胞菌进化出了一系列铁摄取系统,这些系统对其毒力因子的释放和生物被膜的形成又起着重要的调控作用。本文主要对铜绿假单胞菌生物被膜的形成与调控机制及其铁摄取系统进行了综述,为进一步了解及清除铜绿假单胞菌引发的问题提供途径与思路。 相似文献
19.
Lipopolysaccharide changes and cytoplasmic polyphosphate granule accumulation in Pseudomonas aeruginosa during growth on hexadecane 总被引:1,自引:0,他引:1
Pseudomonas aeruginosa ATCC 9027 grew on 0.5% (v/v) hexadecane as a sole carbon source in a chemically defined medium which required the addition of Fe3+ and Ca2+. There was a variable and extended lag period before an active growth rate was attained. Visible light microscopic evidence revealed that the bacteria did not adhere to hexadecane droplets suggesting the absence of a bioemulsifier. When compared with glucose-grown cells, hexadecane-grown cells produced 75% less lipopolysaccharide (on a total protein basis); this lipopolysaccharide contained 30-40% less carbohydrate, yet 50-75% more 2-keto-3-deoxyoctonate. These chemical changes made the cell surface appear more hydrophobic when tested in a biphasic hydrophobicity index system. Electron microscopy of thin sections and freeze etchings revealed hexadecane-grown cells contained granules which were judged to be polyphosphate by energy dispersive X-ray analysis. There was no apparent major morphological envelope alteration within the two cell types. 相似文献