首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从大肠杆菌E.colik-12中通过PCR克隆出磷酸果糖激酶编码基因(pfkA),将其连到表达载体pCMVTNTTMvector。连接构建成重组质粒Ku-1,导入谷氨酸棒杆菌B4(已经诱变改造),并得到表达。酶活性测定表明Ku-1的pfkA基因在B44中得到表达(磷酸果糖激酶为128.6±0.86U/g蛋白)。解除磷酸果糖激酶对已经改造的谷氨酸的整个代谢途径的限制。同时,B44对糖转化率比B4(由出发菌株B1诱变而来)高10.64%,产酸率比B4高17.1%。  相似文献   

2.
【背景】大肠杆菌由于生长性能优良、遗传背景清晰,常被用作苏氨酸生产菌。【目的】敲除大肠杆菌Escherichia coli THR苏氨酸合成途径的非必需基因,并异源表达苏氨酸合成必需的关键酶,构建一株苏氨酸高产菌株。【方法】利用FLP/FRT重组酶系统,敲除E. coli THR中lysC、pfkB和sstT,同时进行谷氨酸棒杆菌中lysC~(fbr)、thrE和丙酮丁醇梭菌中gapC的重组质粒构建并转化到宿主菌中。【结果】以E. coli THR为出发菌株,敲除其苏氨酸合成途径中表达天冬氨酸激酶Ⅲ (AKⅢ)的基因lysC、磷酸果糖激酶Ⅱ基因pfkB及苏氨酸吸收蛋白表达基因sstT,使菌株积累苏氨酸的产量达到75.64±0.35g/L,比出发菌株增加9.9%。随后异源表达谷氨酸棒杆菌中解除了反馈抑制的天冬氨酸激酶(lysC~(fbr))、苏氨酸分泌转运蛋白(thrE)及丙酮丁醇梭菌中由gapC编码的NADP+依赖型甘油醛-3-磷酸脱氢酶,获得重组菌株E. coli THR6菌株。该菌株积累苏氨酸的产量提高到105.3±0.5 g/L,糖酸转化率提高了43.20%,单位产酸能力提高到5.76 g/g DCW,最大生物量为18.26 g DCW/L。【结论】单独敲除某个基因或改造某个途径不能使苏氨酸大量合成和积累,对多个代谢途径共同改造是构建苏氨酸工程菌的最有效方法。  相似文献   

3.
4.
The levels of glutamate synthase and of glutamine synthetase are both derepressed 10-fold in strain JP1449 of Escherichia coli carrying a thermosensitive mutation in the glutamyl-transfer ribonucleic acid (tRNA) synthetase and growing exponentially but at a reduced rate at a partially restrictive temperature, compared with the levels in strain AB347 isogenic with strain JP1449 except for this thermosensitive mutation and the marker aro. These two enzymes catalyze one of the two pathways for glutamate biosynthesis in E. coli, the other being defined by the glutamate dehydrogenase. We observed a correlation between the percentage of charged tRNAGlu and the level of glutamate synthase in various mutants reported to have an altered glutamyl-tRNA synthetase activity. These results suggest that a glutamyl-tRNA might be involved in the repression of the biosynthesis of the glutamate synthase and of the glutamine synthetase and would couple the regulation of the biosynthesis of these two enzymes, which can work in tandem to synthesize glutamate when the ammonia concentration is low in E. coli but whose structural genes are quite distant from each other. No derepression of the level of the glutamate dehydrogenase was observed in mutant strain JP1449 under the conditions where the levels of the glutamine synthetase and of the glutamate synthase were derepressed. This result indicates that the two pathways for glutamate biosynthesis in E. coli are under different regulatory controls. The glutamate has been reported to be probably the key regulatory element of the biosynthesis of the glutamate dehydrogenase. Our results indicate that the cell has chosen the level of glutamyl-tRNA as a more sensitive probe to regulate the biosynthesis of the enzymes of the other pathway, which must be energized at a low ammonia concentration.  相似文献   

5.
The enzymes L-threonine dehydrogenase and 2-amino-3-ketobutyrate coenzyme A (CoA) lyase are known to catalyze the net conversion of L-threonine plus NAD+ plus CoA to NADH plus glycine plus acetyl-CoA. When homogeneous preparations of these two enzymes from Escherichia coli were incubated together for 40 min at 25 degrees C with glycine, acetyl-CoA, and NADH, a 36% decrease in the level of glycine (with concomitant NADH oxidation) was matched by formation of an equivalent amount of threonine, indicating that this coupled sequence of enzyme-catalyzed reactions is reversible in vitro. Several experimental factors that affect the efficiency of this conversion in vitro were examined. A constructed strain of E. coli, MD901 (glyA thrB/C tdh), was unable to grow unless both glycine and threonine were added to defined rich medium. Introduction of the plasmid pDR121 (tdh+kbl+) into this strain enabled the cells to grow in the presence of either added glycine or threonine, indicating that interconversion of these two amino acids occurred. Threonine that was isolated from the total pool of cellular protein of MD901/pDR121 had the same specific radioactivity as the [14C]glycine added to the medium, establishing that threonine was formed exclusively from glycine in this strain. Comparative growth rate studies with several strains of E. coli containing plasmid pDR121, together with the finding that kcat values of pure E. coli 2-amino-3-ketobutyrate CoA lyase favor the cleavage of 2-amino-3-ketobutyrate over its formation by a factor of 50, indicate that the biosynthesis of threonine is less efficient than glycine formation via the coupled threonine dehydrogenase-2-amino-3-ketobutyrate lyase reactions.  相似文献   

6.
L Yin  X Hu  D Xu  J Ning  J Chen  X Wang 《Metabolic engineering》2012,14(5):542-550
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the l-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an l-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to l-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to l-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of l-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L l-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance l-isoleucine production in C. glutamicum.  相似文献   

7.
Two threonine-requiring mutants with derepressed expression of the threonine operon were isolated from an Escherichia coli K-12 strain containing two copies of the thr operon. One of them carries a leaky mutation in ilvA (the structural gene for threonine deaminase), which creates an isoleucine limitation and therefore derepression of the thr operon. In the second mutant, the enzymes of the thr operon were not repressed by threonine plus isoleucine; the threonyl-transfer ribonucleic acid(tRNA) synthetase from this mutant shows an apparent Km for threonine 200-fold higher than that of the parental strain. The gene, called thrS, coding for threonyl-tRNA synthetase was located around 30 min on the E. coli map. The regulatory properties of this mutant imply the involvement of charged threonyl-tRNA or threonyl-tRNA synthetase in the regulation of the thr operon.  相似文献   

8.
The effect of the acid and the osmotic stress on the heat resistance of Escherichia coli (EC1 and EC2) was studied at 63 degrees C in tryptic soy broth adjusted to various pHs (2.5, 4.5 and 6) and various NaCl concentrations (2, 4 and 8%). In the second study, the effect of pretreatment on thermotolerance of E. coli cells was determined. The heat resistance of both strains was low at pH 2.5, but strain EC1 was more resistant than strain EC2. On the contrary, the heat resistance increased with increasing the pH values. Addition of NaCl (2%) to TSB medium, was involved in the protection of cells against heat inactivation, this protective effect was, however, not observed by increasing the NaCl concentration up to 8%. The combined effect of the pH and NaCl on the thermal resistance of both strains was significantly lower at pH 2.5 and NaCl 8%, the number of viable cells decreased from approximately 10(8) CFU/ml to an undetectable number within 20 min for strain EC1 and 15 min for strain EC2, respectively. This study indicates that heat resistance of strain EC1 was enhanced after acid or thermal adaptation. Heat resistance of strain EC2 was, however, enhanced only after thermal adaptation. For both strains no relationship was found between salt adaptation and the ability to resist thermal stress.  相似文献   

9.
Alternate pathway for isoleucine biosynthesis in Escherichia coli   总被引:3,自引:2,他引:1       下载免费PDF全文
A threonine dehydrataseless mutant of Escherichia coli, Crookes strain, was observed to grow on an acetate minimal medium without the usual requirement for isoleucine supplementation. Both the wild-type Crookes strain and a threonine auxotroph metabolized l-glutamate-1-(14)C to l-isoleucine-1-(14)C with no appreciable randomization, suggesting that a pathway for isoleucine formation from glutamate via beta-methylaspartate, beta-methyloxaloacetate, and alpha-ketobutyrate was possible in addition to the pathway from threonine and alpha-ketobutyrate. Crude cell-free extracts formed (14)C-beta-methylaspartate from (14)C-glutamate, and the conversion of beta-methylaspartate to alpha-ketobutyrate was also demonstrated, thus supporting the conclusion that glutamate can serve as a precursor of alpha-ketobutyrate (and isoleucine) without the necessary involvement of threonine as an intermediate.  相似文献   

10.
The effect of amino acids was examined on the production of l-lysine by AEC resistant mutant of B. lactofermentum. Among amino acids tested, only leucine showed strong specific inhibition. In order to release the production of l-lysine from this negative effect of leucine, leucine auxotrophs were derived from AEC resistant strain of B. lactofermentum. Most of these leucine auxotrophs produced larger amount of l-lysine (maximally 41 mg/ml) than the parental strain which produced about 18 mg/ml of l-lysine. It was confirmed that leucine auxotrophs derived from AEC resistant mutant of other glutamate producing bacteria, B. saccharolyticum and Corynebacterium glutamicum. These results suggested that leucine might directly or indirectly affect the biosynthesis of lysine.

However, this increase in lysine productivity of leucine auxotrophs could not be explained by the alteration of aspartokinase (EC 2.7.2.4) and homoserine dehydrogenase (EC 1.1.1.3). These enzymes are key enzymes in lysine and threonine biosynthesis, respectively.  相似文献   

11.
A mutant of Escherichia coli (designated E. coli SBD-76) that utilizes L-threonine as the sole carbon source was isolated. In contrast with levels in extracts of wild-type cells, the levels of threonine dehydrogenase in extracts of this mutant were 100-fold higher than levels of threonine aldolase or degradative threonine dehydratase. Catabolite repression of threonine dehydrogenase was manifested in wild-type, but not SBD-76, cells. For purposes of isolating enzymes, large quantities of SBD-76 cells with the elevated threonine dehydrogenase level could be grown in a fermentor in modified Fraser medium containing 1% glycerol, rather than in the 0.2% L-threonine minimal medium used to isolate the mutant. SBD-76 cells grown on L-threonine excreted glycine and aminoacetone into the medium, and extracts of the mutant strain catalyzed a quantitative conversion of L-threonine to glycine and aminoacetone.  相似文献   

12.
2-Amino-3-ketobutyrate CoA ligase (KBL, EC 2.3.1.29) is a pyridoxal phosphate (PLP) dependent enzyme, which catalyzes the second reaction step on the main metabolic degradation pathway for threonine. It acts in concert with threonine dehydrogenase and converts 2-amino-3-ketobutyrate, the product of threonine dehydrogenation by the latter enzyme, with the participation of cofactor CoA, to glycine and acetyl-CoA. The enzyme has been well conserved during evolution, with 54% amino acid sequence identity between the Escherichia coli and human enzymes. We present the three-dimensional structure of E. coli KBL determined at 2.0 A resolution. KBL belongs to the alpha family of PLP-dependent enzymes, for which the prototypic member is aspartate aminotransferase. Its closest structural homologue is E. coli 8-amino-7-oxononanoate synthase. Like many other members of the alpha family, the functional form of KBL is a dimer, and one such dimer is found in the asymmetric unit in the crystal. There are two active sites per dimer, located at the dimer interface. Both monomers contribute side chains to each active/substrate binding site. Electron density maps indicated the presence in the crystal of the Schiff base intermediate of 2-amino-3-ketobutyrate and PLP, an external aldimine, which remained bound to KBL throughout the protein purification procedure. The observed interactions between the aldimine and the side chains in the substrate binding site explain the specificity for the substrate and provide the basis for a detailed proposal of the reaction mechanism of KBL. A putative binding site of the CoA cofactor was assigned, and implications for the cooperation with threonine dehydrogenase were considered.  相似文献   

13.
A number of strains of Escherichia coli K-12 failed to synthesize significant amounts of biodegradative threonine dehydratase (EC 4.2.1.16) when grown anaerobically in tryptone-yeast extract medium, a condition which is optimal for the induction of this enzyme. However, the addition of 10 mM potassium nitrate to the culture medium enabled a few of these strains, notably MB201, to induce the enzyme. An examination of the kinetic parameters, modifier sensitivity, and immunological cross-reactivity revealed that the enzyme produced by MB201 in nitrate-supplemented medium appeared indistinguishable from the dehydratase of a wild-type strain. The reduced expression of threonine dehydratase in MB201 appeared highly specific; the synthesis of two other inducible enzymes, D-serine deaminase and tryptophanase, and two "anaerobic" proteins, namely, fumarate reductase and cytochrome c551, remained unaffected. The mutation (tdcI) responsible for the altered expression of the dehydratase in MB201 was located at min 91 on the E. coli chromosome and appeared to tightly linked to if not identical with pgi, the gene encoding phosphoglucose isomerase, as judged by growth experiments on glucose and fructose, direct assay of phosphoglucose isomerase activity, spontaneous and simultaneous reversion of MB201 (tdcI) to TdcI+ and Pgi+ phenotype, and cosegregation of the two loci during transduction with P1 phage. Because not all strains lacking the dehydratase showed nitrate-dependent enzyme synthesis or had lesions at the pgi locus, it appears that mutations at multiple loci on the E. coli chromosome may influence the expression of the enzyme in vivo.  相似文献   

14.
For the purpose of assessing in vivo the importance of 2,4-dienoyl-CoA reductase (EC 1.3.1.34) in the beta-oxidation of unsaturated fatty acids, reductase mutants of Escherichia coli were isolated by selecting cells that were able to grow on oleate but not on petroselinic acid (6-cis-octadecenoic acid). One mutant (fadH) exhibited 12% of the 2,4-dienoyl-CoA reductase activity present in the parental strain with other beta-oxidation enzymes being essentially unaffected. Antireductase antibodies were used to show that the mutant contains a fadH gene product at a level similar to that observed in the parental strain. Thus, the mutation seems to have resulted in the synthesis of a fadH gene product with lower specific activity. The mutation was mapped in the 71-75-min region of the E. coli chromosome where no other gene for beta-oxidation enzymes has so far been located. Complementation of the mutation by F'141, which carries the 67-75.5-min region of the E. coli genome, resulted in an increase in the 2,4-dienoyl-CoA reductase activity to 80% of the level found in the parental strain. Measurements of respiration with petroselinic acid as the substrate showed rates to be linearly dependent on the 2,4-dienoyl-CoA reductase activity up to levels found in wild-type E. coli. 2,4-Dienoyl-CoA reductase, like other enzymes of beta-oxidation, was induced when E. coli was grown on a long chain fatty acid as the sole carbon source. It is concluded that 2,4-dienoyl-CoA reductase is required in vivo for the beta-oxidation of unsaturated fatty acids with double bonds extending from even-numbered carbon atoms.  相似文献   

15.
Phage infection is common during the production of L-threonine by E. coli, and low L-threonine production and glucose conversion percentage are bottlenecks for the efficient commercial production of L-threonine. In this study, 20 antiphage mutants producing high concentration of L-threonine were obtained by atmospheric and room temperature plasma (ARTP) mutagenesis, and an antiphage E. coli variant was characterized that exhibited the highest production of L-threonine Escherichia coli ([E. coli] TRFC-AP). The elimination of fhuA expression in E. coli TRFC-AP was responsible for phage resistance. The biomass and cell growth of E. coli TRFC-AP showed no significant differences from those of the parent strain (E. coli TRFC), and the production of L-threonine (159.3 g L−1) and glucose conversion percentage (51.4%) were increased by 10.9% and 9.1%, respectively, compared with those of E. coli TRFC. During threonine production (culture time of 20 h), E. coli TRFC-AP exhibited higher activities of key enzymes for glucose utilization (hexokinase, glucose phosphate dehydrogenase, phosphofructokinase, phosphoenolpyruvate carboxylase, and PYK) and threonine synthesis (glutamate synthase, aspartokinase, homoserine dehydrogenase, homoserine kinase and threonine synthase) compared to those of E. coli TRFC. The analysis of metabolic flux distribution indicated that the flux of threonine with E. coli TRFC-AP reached 69.8%, an increase of 16.0% compared with that of E. coli TRFC. Overall, higher L-threonine production and glucose conversion percentage were obtained with E. coli TRFC-AP due to increased activities of key enzymes and improved carbon flux for threonine synthesis.  相似文献   

16.
A comparative study, in illuminated and non-illuminated systems, was made to determine the survival strategies of plasmid-carrier and plasmidless bacteria in sterile river water. Two strains of Escherichia coli from river water were selected: one plasmidless, EC1, and one antibiotic-resistant strain, EC7, which showed plasmid bands. By matings with EC7 as donor and E. coli K12 strain J62 as recipient, transconjugants were generated, the J62(7) strain, which showed both antibiotic resistance and plasmid bands. Ethidium bromide curing of the EC7 strain generated the EC7(2) strain which showed a partial loss of resistance and a reorganization of plasmid bands. Under non-illuminated conditions the total number of cells detected by direct count and the number of culturable cells (injured and non-injured cells) remained practically constant throughout the period of incubation. In the illuminated systems, however, the number of cfu decreased in four of the five strains studied. The greatest decreases are those of the J62 strain, followed by those of the J62(7), EC1, EC7(2) and EC7 strains. Differences in survival strategies as a consequence of the presence or absence of plasmids are discussed.  相似文献   

17.
We have cloned the structural gene (tdcB) of biodegradative threonine deaminase from Escherichia coli W strain by utilizing the polymerase chain reaction. The JM109/pUCTDA strain, which was obtained by transforming E. coli JM109 with a vector plasmid (pUCTDA) containing the cloned tdcB gene, produced a large amount of the enzyme corresponding to more than 5% of the total soluble protein. Amino acid sequence analysis of this recombinant enzyme showed that the amino acid sequence is identical to the nucleotide-deduced sequence of biodegradative threonine deaminase from E. coli K-12.  相似文献   

18.
RH Peng  YS Tian  AS Xiong  W Zhao  XY Fu  HJ Han  C Chen  XF Jin  QH Yao 《PloS one》2012,7(8):e39579
The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R.aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E.coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R.aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E.coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R.aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R.aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.  相似文献   

19.
Metabolic engineering of Escherichia coli for the production of 1-propanol   总被引:1,自引:0,他引:1  
An engineered Escherichia coli strain that produces 1-propanol under aerobic condition was developed based on an l-threonine-overproducing E. coli strain. First, a feedback resistant ilvA gene encoding threonine dehydratase was introduced and the competing metabolic pathway genes were deleted. Further engineering was performed by overexpressing the cimA gene encoding citramalate synthase and the ackA gene encoding acetate kinase A/propionate kinase II, introducing a modified adhE gene encoding an aerobically functional AdhE, and by deleting the rpoS gene encoding the stationary phase sigma factor. Fed-batch culture of the final engineered strain harboring pBRthrABC-tac-cimA-tac-ackA and pTacDA-tac-adhE(mut) allowed production of 10.8gL(-1) of 1-propanol with the yield and productivity of 0.107gg(-1) and 0.144gL(-1)h(-1), respectively, from 100gL(-1) of glucose, and 10.3gL(-1) of 1-propanol with the yield and productivity of 0.259gg(-1) and 0.083gL(-1)h(-1), respectively, from 40gL(-1) glycerol.  相似文献   

20.
利用Red同源重组技术构建产L-苏氨酸的基因工程菌   总被引:1,自引:0,他引:1  
利用Red重组技术构建不同基因突变的L-苏氨酸工程菌大肠杆菌ITHR,研究单敲除metA、ilvA和双敲除metA、ilvA基因后对L-苏氨酸积累的影响。应用质粒pKD46介导的Red同源重组系统,通过第一次同源重组将拟敲除基因替换为氯霉素抗性基因,再通过重组酶在FRT位点发生第二次同源重组,消除抗性基因,成功敲除了菌株ITHR体内苏氨酸合成的代谢旁路途径中的metA和ilvA基因,构建了三株不同的基因突变株。将携带苏氨酸操纵子的工程质粒pWYE065电转化入敲除不同基因的突变株中,构建基因工程菌。经5 L发酵罐发酵产酸实验,未敲除任何基因的菌株ITHR/pWYE065 L-苏氨酸的产量为5.55±0.51 g/L,metA基因单敲除菌株ITHR△metA/pWYE065 L-苏氨酸产量为9.77±1.83 g/L,ilvA基因单敲除菌株ITHR△ilvA/pWYE065 L-苏氨酸产量为8.65±1.42 g/L,同时敲除ilvA和metA基因的菌株ITHR△metA△ilvA/pWYE065 L-苏氨酸的产量增加到13.6±1.14 g/L。通过敲除L-苏氨酸的旁路代谢途径中的关键酶的基因,可以增强L 苏氨酸积累的效果,为L-苏氨酸工程菌的进一步改造奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号