首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Comparative analyses of the genetic differentiation in microsatellite markers ( F ST) and leaf morphology characters ( Q ST) of Amphicarpaea edgeworthii Benth. were conducted to gain insight into the roles of random processes and natural selection in the population divergence. Simple sequence repeat analyses on 498 individuals of 19 natural populations demonstrate that a significant genetic differentiation occurs among populations (mean F ST = 0.578), and A. edgeworthii is a highly self-fertilized species (mean selfing rate s  = 0.989). The distribution pattern of genetic diversity in this species shows that central populations possess high genetic diversity (e.g. population WL with H E = 0.673 and population JG with H E = 0.663), whereas peripheral ones have a low H E as in population JD (0.011). The morphological divergence of leaf shape was estimated by the elliptical Fourier analysis on the data from 11 natural and four common garden populations. Leaf morphology analyses indicate the morphological divergence does not show strong correlation with the genetic differentiation ( R  = 0.260, P  = 0.069). By comparing the 95% confidence interval of Q ST with that of F ST, Q ST values for five out of 12 quantitative traits are significantly higher than the average F ST value over eight microsatellite loci. The comparison of F ST and Q ST suggests that two kinds of traits can be driven by different evolutionary forces, and the population divergence in leaf morphology is shaped by local selections.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 505–516.  相似文献   

2.
Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native European and invasive North American populations ( Q ST −  F ST analysis). Our results indicate that invasive and native populations harbour comparable levels of amplified fragment length polymorphism variation, a pattern consistent with multiple independent introductions from a diverse European gene pool. However, it was observed that the genetic variation reduced during subsequent invasion, perhaps by founder effects and genetic drift. Comparison of genetically based quantitative trait differentiation ( Q ST) with its expectation under neutrality ( F ST) revealed no evidence of disruptive selection ( Q ST >  F ST) or stabilizing selection ( Q ST <  F ST). One exception was found for only one trait (the number of stems) showing significant sign of stabilizing selection across all populations. This suggests that there are difficulties in distinguishing the effects of nonadaptive population processes and natural selection. Multiple introductions of purple loosestrife may have created a genetic mixture from diverse source populations and increased population genetic diversity, but its link to the adaptive differentiation of invasive North American populations needs further research.  相似文献   

3.
Aim  In order to look for a possible centre of survival for the Norway spruce ( Picea abies Karst.) in the south-western Alps, six natural populations of this area were investigated by means of genetic markers in order to assess the degree and the distribution of genetic diversity within the species.
Location  Western and South-western Alps.
Methods  Populations were genotyped using seven simple sequence repeat (SSR) markers. Basic population genetics parameters were estimated and the amount of genetic differentiation calculated.
Results  A large amount of variability was found (0.59 <  H e < 0.67); genetic differentiation as measured by F ST was 0.05, close to other similar studies; no isolation by distance was detected by a Mantel test. Analysis of molecular variance confirmed a high degree of variability within populations and a low degree of variability among populations. Finally, the number of populations from which those observed could have arisen was estimated by Bayesian analysis.
Main conclusions  The results presented here suggest that the present populations derive their genetic make-up from three inferred clusters. The possible existence in this area of a relict/refuge population during the last glaciation is discussed.  相似文献   

4.
Aim  To explore the genetic and phylogeographic structure of a temperate forest species, Pinus strobiformis Englem., in a subtropical region in the context of climate change during the Pleistocene. It is expected that the colder conditions during glacial stages favoured range expansions of P. strobiformis , thus promoting gene flow.
Location  Mexico and the United States.
Methods  Estimates of genetic diversity and structure were obtained using chloroplast microsatellite loci of 23 populations of P. strobiformis across its entire range, seven neighbouring populations of Pinus ayacahuite Ehrenb. ex. Schtdl, and one population of Pinus flexilis James.
Results  The genetic diversity of P. strobiformis ( H e = 0.856) was found to be high, especially in western populations, whereas eastern populations were less variable and more genetically similar to P. ayacahuite of central Mexico. We found evidence of significant phylogeographic structure ( N ST = 0.444; P  =   0.026), high genetic structure ( R ST = 0.270), and isolation by distance. Pairwise R ST and samova (spatial analysis of molecular variance) results indicated an east–west partition of genetic variation, with populations within each group showing little differentiation and no isolation by distance.
Main conclusions  The phylogeographic structure of P. strobiformis across the entire range was pronounced, with two main genetic and geographic groups separated by the Chihuahuan Desert. However, within each of the two groups there was little population differentiation and no isolation by distance, suggesting genetic connectivity as a result of population expansions within these areas during glacial stages.  相似文献   

5.
Genetic variation and population structure of Penaeus monodon in the coastal waters of South China were detected using mitochondrial DNA control region sequences. Eighty individuals were collected at Sanya, Shenzhen, Zhanjiang and Beihai; 69 haplotypes with 157 polymorphic sites were detected. Nucleotide diversity (π) of the combined samples (6.16 ± 3.01%) was much higher than many other species in Chinese seas, such as Penaeus japonicus , Portunus trituberculatus , and Acanthopagrus schlegeli . Genetic differentiation was significant between Beihai and Sanya (pairwise F ST = 0.09836, P < 0.05), and between Beihai and Shenzhen (pairwise F ST = 0.12153, P < 0.05). Significant genetic differentiation among all populations was found by analysis of molecular variance ( amova ) ( F ST = 0.053, P = 0.037 < 0.05). The upgma dendrogram of the four populations showed Sanya and Shenzhen as the closest to each other, with Beihai having the greatest genetic distance from Sanya and Shenzhen. The tiger prawn of the coastal waters of South China should therefore be bred as two separated stocks, avoiding inbreeding or outbreeding selection of P. monodon in the captive breeding program. According to our results one source population is Beihai, and the others are from Sanya and Shenzhen.  相似文献   

6.
1. The recent arrival and explosive spread of the zebra mussel, Dreissena polymorpha (Pallas), in Ireland provided a rare opportunity to study the population genetics of an invasive species.
2. Eight polymorphic allozyme loci ( ACO-1, ACO-2 , EST-D, GPI, IDH-2, MDH, OPDH and PGM ) were used to investigate genetic diversity and population structure in five Irish populations, and the results were compared with those from a previous microsatellite study on the same samples.
3. The mean number of alleles per locus (2.7 ± 0.1) was similar to the mean for the same loci in European populations, suggesting that Irish founder populations were large and/or multiple colonization events took place after foundation. A deficiency of heterozygotes was observed in all populations, but was uneven across loci.
4. Pairwise comparisons, using Fisher's exact tests and F ST values, revealed significant genetic differentiation among populations. The overall multilocus F ST estimate was 0.118 ± 0.045, which contrasted with an estimate of 0.015 ± 0.007 from five microsatellite loci on the same samples in a previous study.
5. Assuming that microsatellites can be used as a neutral baseline, the discordant results from allozymes and microsatellites suggest that selection may be acting on some allozyme loci, specifically ACO-1, ACO-2 , IDH-2 and MDH, which contributed most to the significant differentiation between samples.  相似文献   

7.
Abstract In order to clarify the genetic diversity and population structure of Ranunculus japonicus , allozymic analysis was conducted on 60 populations in southwestern Japan. Considerable genetic variati ons were detected among the populations of R. japonicus . The genetic diversities within species ( H es = 0.215) and within populations ( H ep = 0.172) were slightly higher than those of other perennial herbs with widespread distribution and outcrossing plants. Significantly higher values of fixation index were detected in some populations, which might have arisen from restricted mating partners. The majority of genetic variation (approx. 80%) resided within a population and a moderate level of genetic differentiation ( G ST = 0.203) was observed among populations. The F ST value (0.203) suggests the existence of a substantial population structure in this species. The highly significant correlation between geographic distance and F ST values indicates that isolation by distance has played an important role in the construction of the genetic structure of this species.  相似文献   

8.
The construction of the world's largest hydroelectric scheme across the Yangtze River, the Three Gorges Dams (TGD), in the centre of a southern-central Chinese biodiversity hot spot, the Three Gorges Reservoir Area (TGRA), has attracted international concern and conservation action. To examine whether landscape changes to date have impacted regional flora, and to establish long-term monitoring baselines, we assessed the distribution and dynamics of an endangered and TGRA endemic fern, Adiantum reniforme var. sinense . For eight nuclear microsatellites, high levels of genetic diversity ( H E = 0.653–0.781) and slightly elevated inbreeding ( F IS = 0.077–0.197) were found across 13 surveyed populations. The population history of this fern is characterized by a balance of gene flow and genetic drift, where historical dispersal, inferred from coalescent ( F =  0.129) and genetic differentiation ( F ST = 0.094 and R ST = 0.180) approaches, is moderate, reflecting an isolation by distance relationship. Importantly, most populations exhibited mutation-drift disequilibrium, suggesting a recent population decline, which is congruent with the known demographic history of the species following dam-related activities. Based on these results, populations of A. reniforme var. sinense are expected to lose genetic diversity and increase genetic structure as dam-related activities decrease size and increase genetic isolation of remnants.  相似文献   

9.
The genetic population structure of coastal cutthroat trout ( Oncorhynchus clarki clarki ) in Washington state was investigated by analysis of variation in allele frequencies at six highly polymorphic microsatellite loci for 13 anadromous populations, along with one outgroup population from the Yellowstone subspecies ( O. clarki bouvieri) (mean heterozygosity = 67%; average number of alleles per locus = 24). Tests for genetic differentiation revealed highly significant differences in genotypic frequencies for pairwise comparisons between all populations within geographical regions and overall population subdivision was substantial ( F ST = 0.121, R ST = 0.093), with 44.6% and 55.4% of the among-population diversity being attributable to differences between streams ( F SR = 0.054) and between regions ( F RT = 0.067), respectively. Analysis of genetic distances and geographical distances did not support a simple model of isolation by distance for these populations. With one exception, neighbour-joining dendrograms from the Cavalli-Sforza and Edwards' chord distances and maximum likelihood algorithms clustered populations by physiogeographic region, although overall bootstrap support was relatively low (53%). Our results suggest that coastal cutthroat trout populations are ultimately structured genetically at the level of individual streams. It appears that the dynamic balance between gene flow and genetic drift in the subspecies favours a high degree of genetic differentiation and population subdivision with the simultaneous maintenance of high heterozygosity levels within local populations. Results are discussed in terms of coastal cutthroat trout ecology along with implications for the designation of evolutionarily significant units pursuant to the US Endangered Species Act of 1973 and analogous conservation units.  相似文献   

10.
1. Previously, the Yangtze River connected thousands of shallow lakes which together formed a potamo-lacustrine system capable of sustaining a rich variety of submerged macrophytes.
2.  Potamogeton malaianus is one of the dominant submerged macrophytes in many lakes of this area. Genetic variation and population structure of P. malaianus populations from ten lakes in the potamo-lacustrine system were assessed using inter-simple sequence repeat markers.
3. Twelve primer combinations produced a total of 166 unambiguous bands of which 117 (70.5%) were polymorphic. Potamogeton malaianus exhibited a moderate level of population genetic diversity ( P P = 70.5%, H E = 0.163 and I =  0.255), as compared with that of plants in the same habitat and range. The main factors responsible for this moderate value were the plant's mixed breeding system (both sexual and asexual) and the hydrological connectivity among habitats.
4.  F statistics, calculated using different approaches, consistently revealed a moderate genetic differentiation among populations, contributing about 20% of total genetic diversity. An estimate of gene flow (using F ST) suggested that gene flow played a more important role than genetic drift in the current population genetic structure of P. malaianus ( Nm  = 1.131).
5. The genetic diversity of P. malaianus did not increase downstream. A high level of linkage–disequilibrium at the whole population level suggested that metapopulation processes may affect genetic structure. The migration pattern of P. malaianus was best explained by a two-dimensional stepping stone model, indicating that bird-mediated dispersal could greatly influence gene movements among lakes.  相似文献   

11.
Regional differentiation of North American Atlantic salmon at allozyme loci   总被引:1,自引:0,他引:1  
Allozyme variation was characterised by starch gel electrophoresis at 23 enzyme coding loci and one regulatory locus in Atlantic salmon from 53 rivers in Eastern Canada, encompassing the majority of the species' North American range. Variation among rivers was highly heterogeneous and eight of the 15 polymorphisms showed regionally restricted distributions. Nearest neighbour joining (NJ) analysis and multi‐dimensional scaling suggest six distinct regional groups; Labrador/Ungava, Gulf of Saint Lawrence, Newfoundland (excluding Gulf rivers), the Atlantic shore/Southern Uplands of Nova Scotia, the inner Bay of Fundy, and the outer Bay of Fundy. Approximately 25% of observed genetic variation was distributed among these regions with a weak though significant overall correlation of genetic and geographic distance (Mantel Test, r  = 0·255, P  = 0·005). Collectively, the rivers showed consistent divergence from European populations with strong bootstrap support for the two clusters across loci in the NJ analysis. Mean heterozygosity was 0·061 for both continental groups, but the European population showed more than twice the variation among populations. F ST values were 0·076 and 0·176 for North America and Europe, respectively, with an overall F ST of 0·330.  相似文献   

12.
Amorpha georgiana (Fabaceae) is an endangered legume species found in longleaf pine savannas in the Southeastern United States. Approximately 900 individuals and 14 populations remain, most of which are concentrated in North Carolina. Eleven microsatellite loci were used to explore genetic diversity, population structure and recent population bottlenecks using genotypic data from 132 individuals collected at ten different localities. Although A. georgiana is quite rare, it exhibited high levels of genetic diversity (17.7 alleles/locus; H o = 0.65, H E = 0.75). Most of the genetic variation was found within rather than between populations of this species. The single remaining Georgia population was well differentiated from populations of the Carolinas ( F ST > 0.1), which had weaker structure among them ( F ST < 0.1). Only a geographically disjunct population showed strong evidence of a recent population bottleneck, perhaps due to a recent founder event. Hybridization with A. herbacea was also detected. For conservation management plans, A. georgiana populations in each geographic region (North Carolina, South Carolina and Georgia) plus a disjunct population in North Carolina (Holly Shelter) should be treated as separate management units for which in situ conservation, including habitat restoration and use of prescribed burns, should ensure persistence of this species and preservation of its evolutionary potential.  相似文献   

13.
1. Brown trout ova were imported during the last century from different locations in Europe to establish populations in Chilean rivers (South America). The rivers are currently occupied by naturalized populations that have adapted to very different environmental conditions, such as areas of semi-desert in the north, or rainy and cold areas in the south.
2. In this first study in this geographical area, electrophoretic variability of proteins encoded by twenty-five loci was screened in seven populations from northern to southern Chile.
3. The results show significant heterogeneity of allelic frequencies between populations in seven of eleven polymorphic loci detected. The estimated value of genetic diversity 0.1274 ( H T) is higher than that observed in populations from areas of natural distribution of this species. However, only 12.64% of this genetic diversity was found between samples ( G ST), indicating a low genetic divergence among Chilean populations. The observed associations among the Chilean and 'modern' group of European populations suggests the probable origin of the new populations.  相似文献   

14.
We assessed colony- and island-level genetic differentiation for the flightless cormorant ( Phalacrocorax harrisi ), an endangered Galápagos endemic that has one of the most limited geographical distributions of any seabird, consisting of only two adjacent islands. We screened 223 individuals from both islands and nine colonies at five microsatellite loci, recovering 23 alleles. We found highly significant genetic differentiation throughout the flightless cormorant's range on Fernandina and Isabela Islands (global F ST = 0.097; P  < 0.0003) both between islands (supported by Bayesian analyses, F ST and R ST values) and within islands (supported only by F ST and R ST values). An overall pattern of isolation-by-distance was evident throughout the sampled range ( r =  0.4169, one-sided P  ≤ 0.02) and partial Mantel tests of this relationship confirmed that ocean is a dispersal barrier ( r =  0.500, one-sided P  ≤ 0.003), especially across the 5-km gap between the two islands. The degree of detected genetic differentiation among colonies is surprising, given the flightless cormorant's limited range, and suggests a role for low vagility, behavioural philopatry, or both to limit dispersal where physical barriers are absent. We argue that this population should be managed as at least two genetic populations to better preserve the species-level genetic diversity, but, for demographic reasons, advocate the continued conservation of all breeding colonies.  相似文献   

15.
Several recent studies have found amphibian populations to be genetically highly structured over rather short geographical distances, and that the rate of genetically effective dispersal may differ between the sexes. However, apart from the common frog ( Rana temporaria ) little is known about the genetic structuring and sex-biased dispersal in northern European amphibians. We investigated the patterns of genetic diversity and differentiation within and among Scandinavian populations of the moor frog ( Rana arvalis ) using microsatellite markers. The genetic diversity within local R. arvalis populations was not a simple linear negative function of latitude but a convex one: genetic diversity peaked in mid-latitude populations, and declined thereafter dramatically towards the north. The average degree of genetic differentiation among populations ( F ST = 0.14) was lower than that observed for the common frog ( F ST = 0.21), though the pattern of isolation by distance was similar for both species. Contrary to common frogs, no evidence for female-biased dispersal was found. The results reinforce the view that amphibian populations are—in general—highly structured over relatively small geographical distances, even in comparatively recently colonized areas.  相似文献   

16.
Intraspecific genetic diversity governs the potential of species to prevail in the face of environmental or ecological challenges; therefore, its protection is critical. The Indo-Australian Archipelago (IAA) is a significant reservoir of the world's marine biodiversity and a region of high conservation priority. Yet, despite indications that the IAA may harbour greater intraspecific variation, multiple-locus genetic diversity data are limited. We investigated microsatellite DNA variation in Pinctada maxima populations from the IAA to elucidate potential factors influencing levels of genetic diversity in the region. Results indicate that genetic diversity decreases as the geographical distance away from central Indonesia increases, and that populations located towards the centre of P. maxima 's range are more genetically diverse than those located peripherally ( P <  0.01). Significant partitioning of genetic variation was identified ( F ST = 0.027; R ST = 0.023, P  < 0.001) and indicates that historical biogeographical episodes or oceanographic factors have shaped present population genetic structure. We propose that the genetic diversity peak in P. maxima populations may be due to (i) an abundance of suitable habitat within the IAA, meaning larger, more temporally stable populations can be maintained and are less likely to encounter genetic bottlenecks; and/or (ii) the close proximity of biogeographical barriers around central Indonesia results in increased genetic diversity in the region because of admixture of genetically divergent populations. We encourage further genetic diversity studies of IAA marine biota to confirm whether this region has a significant role in maintaining intraspecific diversity, which will greatly assist the planning and efficacy of future conservation efforts.  相似文献   

17.
Allele frequency data from eight microsatellite loci provide evidence of highly significant genetic differentiation among stocks of Atlantic salmon Salmo salar L. from the Bay of Fundy, eastern and north-western Nova Scotia and Newfoundland. Estimates of genetic structure ( R ST and θ) were significant both among all samples taken from the different geographical locations and among samples from geographical regions for which more than one stock was sampled. Samples from the Bay of Fundy taken from stocks which are phenotypically and behaviourally diverse showed particularly high levels of genetic structure. Rogers', allele sharing and (δμ)2 distances also revealed significant differences among stock samples and were significantly correlated [Rogers' and (δμ)2] with sea distance between rivers. Results suggest that stocks of Atlantic salmon in eastern Canada are highly diverse genetically and that this should be an important consideration in any management programme for stocks in the area.  相似文献   

18.
The genetic variation and clonal diversity of two divergent types (grey-green and yellow-green) of clonal populations of Leymus chinensis Tzvel at 14 loci were compared. Total gene diversity (HT) and the coefficient of genetic differentiation (GST) were all higher for the yellow-green type (HT = 0.270; GST =0.186) than for the grey-green type (HT = 0.250; GST = 0.157) of L. chinensis. Rare alleles usually occurred as heterozygotes rather than homozygotes and significant deviations from Hardy-Weinberg equilibrium were found only at a few loci. This indicated that these two types of populations were mainly out-crossing. Clonal diversity, evenness of clones, and mean clone size were not significantly different between the two types. We found that differences between the clone size and genetic variation of the yellow-green type of populations occurred with different climate and habitat population groups. However, for the grey-green type of populations, these genetic variations decreased under conditions of different climate and habitat population groups.  相似文献   

19.
Atlantic salmon is characterized by a high degree of population genetic structure throughout its native range. However, while populations inhabiting rivers in Norway and Russia make up a significant proportion of salmon in the Atlantic, thus far, genetic studies in this region have only encompassed low to modest numbers of populations. Here, we provide the first “in‐depth” investigation of population genetic structuring in the species in this region. Analysis of 18 microsatellites on >9,000 fish from 115 rivers revealed highly significant population genetic structure throughout, following a hierarchical pattern. The highest and clearest level of division separated populations north and south of the Lofoten region in northern Norway. In this region, only a few populations displayed intermediate genetic profiles, strongly indicating a geographically limited transition zone. This was further supported by a dedicated cline analysis. Population genetic structure was also characterized by a pattern of isolation by distance. A decline in overall genetic diversity was observed from the south to the north, and two of the microsatellites showed a clear decrease in number of alleles across the observed transition zone. Together, these analyses support results from previous studies, that salmon in Norway originate from two main genetic lineages, one from the Barents–White Sea refugium that recolonized northern Norwegian and adjacent Russian rivers, and one from the eastern Atlantic that recolonized the rest of Norway. Furthermore, our results indicate that local conditions in the limited geographic transition zone between the two observed lineages, characterized by open coastline with no obvious barriers to gene flow, are strong enough to maintain the genetic differentiation between them.  相似文献   

20.
Levels of allozyme variation, population genetic structure, and fine-scale genetic structure (FSGS) of the rare, both sexually and clonally reproducing terrestrial orchid Epipactis thunbergii were examined for eight ( N  = 734) populations in a 20 × 20-km area in South Korea. Twenty-three putative allozyme loci resolved from 15 enzyme systems were used. Extremely low levels of allozyme variation were found within populations: the mean frequency of polymorphic loci was 3.8% [isocitrate dehydrogenase ( Idh-2 ) with two alleles was polymorphic across populations], the mean number of alleles per locus was 1.04, and the mean expected heterozygosity was 0.013. The overall fixation index was not significantly different from zero ( F IS = 0.069), although the species is self-compatible. However, a significantly high degree of population differentiation was found between populations at Idh-2 ( F ST = 0.388) in the studied area. Furthermore, spatial autocorrelation analyses revealed a significant FSGS (up to 3 m) within populations. These observations suggest that the main explanatory factors for the extremely low levels of genetic diversity and the shaping of the population genetic structure of E. thunbergii are genetic drift as a result of a small effective population size, a restricted gene flow, and the isolation of populations. Considering the current genetic structure of E. thunbergii , three guidelines are suggested for the development of conservation strategies for the species in South Korea: (1) protection of habitats of standing populations; (2) prohibition by law of any collection of E. thunbergii ; and (3) protection of nearby pollinator populations, given the fact that fruit set in natural habitats is very low.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 161–169.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号