首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
We have investigated the induction of the six Xenopus nodal-related genes, Xnr1-Xnr6, by maternal determinants. The beta-catenin pathway was modelled by stimulation using Xwnt8, activin-like signalling was modelled by activin, and VegT action was studied by overexpression in animal cap explants. Combinations of factors were examined, and previously unrecognised interactions were revealed in animal caps and whole embryos. For the induction of Xnr5 and Xnr6 in whole embryos, using a beta-catenin antisense morpholino oligonucleotide or a dominant negative XTcf3, we have demonstrated an absolute permissive requirement for the beta-catenin/Tcf pathway, in addition to the requirement for VegT action. In animal caps Xnr5 and Xnr6 are induced in response to VegT overexpression, and this induction is dependent upon the concomitant activation of the beta-catenin pathway that VegT initiates in animal caps. For the induction of Xnr3, VegT interacts negatively so as to inhibit the induction otherwise observed with wnt-signalling alone. The negative effect of VegT is not the result of a general inhibition of wnt-signalling, and does not result from an inhibition of wnt-induced siamois expression. A 294 bp proximal promoter fragment of the Xnr3 gene is sufficient to mediate the negative effect of VegT. Further experiments, employing cycloheximide to examine the dependence of Xnr gene expression upon proteins translated after the mid-blastula stage, demonstrated that Xnrs 4, 5 and 6 are 'primary' Xnr genes whose expression in the late blastula is solely dependent upon factors present before the mid-blastula stage.  相似文献   

12.
Only a subset of cleavage stage blastomeres in the Xenopus embryo is competent to contribute cells to the retina; ventral vegetal blastomeres do not form retina even when provided with neuralizing factors or transplanted to the most retinogenic position of the embryo. These results suggest that endogenous maternal factors in the vegetal region repress the ability of blastomeres to form retina. Herein we provide three lines of evidence that two vegetal-enriched maternal factors (VegT, Vg1), which are known to promote endo-mesodermal fates, negatively regulate which cells are competent to express anterior neural and retinal fates. First, both molecules can repress the ability of dorsal-animal retinogenic blastomeres to form retina, converting the lineage from neural/retinal to non-neural ectodermal and endo-mesodermal fates. Second, reducing the endogenous levels of either factor in dorsal-animal retinogenic blastomeres expands expression of neural/retinal genes and enlarges the retina. The dorsal-animal repression of neural/retinal fates by VegT and Vg1 is likely mediated by Sox17alpha and Derriere but not by XNr1. VegT and Vg1 likely exert their effects on neural/retinal fates through at least partially independent pathways because Notch1 can reverse the effects of VegT and Derriere but not those of Vg1 or XNr1. Third, reduction of endogenous VegT and/or Vg1 in ventral vegetal blastomeres can induce a neural fate, but only allows expression of a retinal fate when both BMP and Wnt signaling pathways are concomitantly repressed.  相似文献   

13.
The maternal determinant VegT is required for both endoderm and mesoderm formation by the Xenopus embryo. An important downstream mediator of VegT action is Xsox17, which has been proposed to be induced in cell-autonomous, then signal-dependent phases. We show that Xsox17 is a direct VegT target, but that direct induction of Xsox17 by VegT is rapidly inhibited. This inhibition is relieved by TGF- beta signalling, to which the future endoderm cell is sensitised by VegT, resulting in the observed dependence on cell contact for maintained Xsox17 expression. We propose that this change in regulation is a consequence of a VegT-induced repressor, inhibiting direct induction of early endoderm markers by VegT, and contributing to the formation of the boundary of the endodermal domain.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号