首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Anatomical mapping was made of the retinal central pathways from the chiasm to the targets within the tectum in the developing Xenopus tadpoles, after labeling a specific regional population of retinal axons with horseradish peroxidase (HRP). In the tadpoles at stage 50, pathway sorting of retinal axons within the optic tract was clear for the dorsoventral axis of the retina, but not for the nasotemporal axis. Most nasal retinal axons and some dorsal and ventral retinal axons invaded the tectum directly at the diencephalotectal junction, and arrived at their correct sites of innervation after running through ectopic parts of the tectum. These findings indicate that the pathway orientation before targets is not a prerequisite factor for establishment of the orderly map of the retinotectal projection. Rather, a direct interaction between ingrowing retinal axons and tectal cells seems to be a predominant factor for specification of retinal central connections.  相似文献   

2.
The growth of optic axons towards experimentally rotated tecta has been studied. In stage 24/25 embryos, a piece of the dorsal neural tube, containing the dorsal midbrain rudiment, was rotated through 180 degrees. At later stages of development, the pathways of growing optic axons were investigated by labelling with either horseradish peroxidase or fluorescent dye. It is shown that retinal ganglion cell axons followed well-defined pathways, in spite of the abnormal structure of the brain, and were able to locate displaced tecta. This directed outgrowth of retinal axons in the optic tracts appears to be related either to the tectum or to some other component included in the graft operations. In tadpoles in which the midbrain rudiment was removed, optic axons still followed the normal course of the optic tract. This observation argues against long-range target attraction as being essential in guiding growing retinal axons towards the tectum. An alternative axon guidance mechanism, selective fasciculation, is discussed as a possible alternative to explain the directed axon outgrowth which occurs in both the normal and in these experimentally manipulated tadpoles.  相似文献   

3.
Axonal pathfinding in organ-cultured embryonic avian retinae   总被引:8,自引:0,他引:8  
Eye cups from stage 14-28 (E2 to E5) chick and quail embryos consisting of neural retina, lens, and vitreous body were cultured for 1 or 2 days. These eyes expanded by proliferation of the retinal cells and the surface areas of the retinae increased several-fold. The area covered by ganglion cells and axons also expanded in vitro. [3H]Thymidine labeling showed extensive proliferation of the neuroepithelial cells including the formation of new ganglion cells. Culturing eyes from embryos before stage 17 results, as in vivo, in the generation of the first ganglion cells of the retina, but unlike in the in vivo situation, the outgrowing axons always formed a random fiber net in the central portion of the retina. A defined axonal pattern identical to the in vivo developed only in specimens from embryos of stage 17 and older. Some aberrant axons, however, were also observed at the retinal periphery in specimens from embryos of more advanced stages (20-24), but only during the second day of culturing. Axons in retinae from embryos of stages 23 to 26 heading toward the optic fissure often crossed the fissure and, in contrast to the situation in vivo, invaded the opposite retinal side. These axons of wrong polarity followed the pathways of axons growing centripetally but in reverse direction. This suggests that the polarity of growing nerve fibers and their course are determined by different factors. Culturing the eyes of embryos from stages 20 to 25 in the presence of antibodies showed that the antibodies penetrated the entire retina with 6 hr. Neither anti-N-CAM nor the T-61 antibody--both recognizing membrane proteins of retinal cells--affected the growth of the eyes in vitro. The development of the axonal pattern in vitro was not affected by incubation with N-CAM-antibodies at concentrations up to 500 micron/ml, whereas the T-61 antibody which is known to block neurite extention in vitro (S. Henke-Fahle, W. Reckhaus, and R. Babiel (l984). "Developmental Neuroscience: Physiological, Pharmacological, and Clinical Aspects," pp. 393-398. Elsevier, Amsterdam/New York) showed inhibition of axonal growth in retina cultures at 50 micron/ml. These results indicate that the eye cultures can be used as a test system for antibodies against antigens which could be involved in axon extension and neurite pathfinding in situ.  相似文献   

4.
Graded expression of the Eph receptor EphA3 in the retina and its two ligands, ephrin A2 and ephrin A5 in the optic tectum, the primary target of retinal axons, have been implicated in the formation of the retinotectal projection map. Two homeobox containing genes, SOHo1 and GH6, are expressed in a nasal-high, temporal-low pattern during early retinal development, and thus in opposing gradients to EphA3. Retroviral misexpression of SOHo1 or GH6 completely and specifically repressed EphA3 expression in the neural retina, but not in other parts of the central nervous system, such as the optic tectum. Under these conditions, some temporal ganglion cell axons overshot their expected termination zones in the rostral optic tectum, terminating aberrantly at more posterior locations. However, the majority of ganglion cell axons mapped to the appropriate rostrocaudal locations, although they formed somewhat more diffuse termination zones. These findings indicate that other mechanisms, in addition to differential EphA3 expression in the neural retina, are required for retinal ganglion axons to map to the appropriate rostrocaudal locations in the optic tectum. They further suggest that the control of topographic specificity along the retinal nasal-temporal axis is split into several independent pathways already at a very early time in development.  相似文献   

5.
To study the adaptative capabilities of the retinotectal system in birds, the primordium of one optic tectum from 12-somite embryos of Japanese quail was transplanted either homotopically, to replace the ablated same primordium, or heterotopically, to replace the ablated dorsal diencephalon in White Leghorn chick embryos of the same stage. The quail nucleolar marker was used to recognize the transplants. The cytoarchitecture of the tecta and the retinal projections from the eye contralateral to the graft were studied on the 17th or 18th day of incubation in the chimeric embryos by autoradiographic or horseradish peroxidase tracing methods. Morphometric analysis was applied to evaluate the percentage of the tectal surface receiving optic projections. It was observed that: (i) quail mesencephalic alar plate can develop a fully laminated optic tectum even when transplanted heterotopically; (ii) retinal ganglion cells from the chick not only recognize the tectal neurons of the quail as their specific targets in homotopic grafts, but the optic fibers deviate to innervate the heterotopically grafted tectum; (iii) in the presence of a graft, the chick retina is unable to innervate a tectal surface of similar or larger size than that of the control tectum; (iv) tectal regions devoid of optic projections, whether formed by donor or by host cells, always present an atrophic lamination; (v) the diencephalic supernumerary optic tectum competes with and prevails over the host tectum as a target for optic fiber terminals.  相似文献   

6.
The effects of removing chondroitin sulfate from chondroitin sulfate proteoglycan molecules on guidance of retinal ganglion cell axons at the optic chiasm were investigated in a brain slice preparation of mouse embryos of embryonic day 13 to 15. Slices were grown for 5 hours and growth of dye-labeled axons was traced through the chiasm. After continuous enzymatic digestion of the chondroitin sulfate proteoglycans with chondroitinase ABC, which removes the glycosaminoglycan chains, navigation of retinal axons was disrupted. At embryonic day 13, before the uncrossed projection forms in normal development, many axons deviated from their normal course, crossing the midline at aberrant positions and invading the ventral diencephalon. In slices from embryonic day 14 embryos, axons that would normally form the uncrossed projection at this stage failed to turn into the ipsilateral optic tract. In embryonic day 15 slices, enzyme treatment caused a reduction of the uncrossed projection that develops at this stage. Growth cones in enzyme-treated slices showed a significant increase in the size both before and after they crossed the midline. This indicates that responses of retinal axons to guidance signals at the chiasm have changed after removal of the chondroitin sulfate epitope. We concluded that the chondroitin sulfate moieties of the proteoglycans are involved in patterning the early phase of axonal growth across the midline and at a later stage controlling the axon divergence at the chiasm.  相似文献   

7.
In the embryonic visual system, EphA receptors are expressed on both temporal and nasal retinal ganglion cell axons. Only the temporal axons, however, are sensitive to the low concentrations of ephrin-A ligands found in the anterior optic tectum. The poor responsiveness of nasal axons to ephrin-A ligands, which allows them to traverse the anterior tectum and reach their targets in the posterior tectum, has been attributed to constitutive activation of the EphA4 receptor expressed in these axons. EphA4 is highly expressed throughout the retina, but is preferentially phosphorylated on tyrosine (activated) in nasal retina. In a screen for EphA4 ligands expressed in chicken embryonic retina, we have identified a novel ephrin, ephrin-A6. Like ephrin-A5, ephrin-A6 has high affinity for EphA4 and activates this receptor in cultured retinal cells. In the embryonic day 8 (E8) chicken visual system, ephrin-A6 is predominantly expressed in the nasal retina and ephrin-A5 in the posterior tectum. Thus, ephrin-A6 has the properties of a ligand that activates the EphA4 receptor in nasal retinal cells. Ephrin-A6 binds with high affinity to several other EphA receptors as well and causes growth cone collapse in retinal explants, demonstrating that it can elicit biological responses in retinal neurons. Ephrin-A6 expression is high at E6 and E8, when retinal axons grow to their tectal targets, and gradually declines at later developmental stages. The asymmetric distribution of ephrin-A6 in retinal cells, and the time course of its expression, suggest that this new ephrin plays a role in the establishment of visual system topography.  相似文献   

8.
The mAb E 21 recognizes a cell surface glycoprotein selectively associated with fish retinal ganglion cell axons that are in a state of growth. All retinal axons and ganglion cells in goldfish embryos stained for E 21. In adult fish, however, E 21 immunoreactivity exhibited a patterned distribution in ganglion cells in the marginal growth zone of the continuously enlarging fish retina and the new axons emerging from these cells in the retina, optic nerve, and optic tract. The E 21 antigen was absent from older axons, except the terminal arbor layer in the tectum, the Stratum fibrosum et griseum superficiale where it was uniformly distributed. Upon optic nerve transection, the previously unlabeled axons reacquired E 21 positivity as they regenerated throughout their path to the tectum. Several months after ONS, however, E 21 staining disappeared from the regenerated axons over most of their lengths but reappeared as in normal fish in the terminal arbor layer. The immunoaffinity-purified E 21 antigen, called Neurolin, has an apparent molecular mass of 86 kD and contains the HNK1/L2 carbohydrate moiety, like several members of the class of cell adhesion molecules of the Ig superfamily. The NH2-terminal amino acid sequence has homologies to the cell adhesion molecule DM-Grasp recently described in the chicken. Thus, retinal ganglion cell axons express Neurolin during their development and are able to reexpress this candidate cell adhesion molecule during axonal regeneration, suggesting that Neurolin is functionally important for fish retinal axon growth.  相似文献   

9.
Axonal growth cones originating from explants of embryonic chick retina were simultaneously exposed to two different cell monolayers and their preference for particular monolayers as a substrate for growth was determined. These experiments show that: (1) nasal retinal axons can distinguish between retinal and tectal cells; (2) temporal retinal axons can distinguish between tectal cells that originated from different positions within the tectum along the antero-posterior axis; (3) axons originating from nasal parts of the retina have different recognizing capabilities from temporal axons; (4) the property of the tectal cells, which is attractive for temporal axons, has a graded distribution along the antero-posterior axis of the tectum; and (5) this gradient also exists in non-innervated tecta.  相似文献   

10.
Retinotectal projection is precisely organized in a retinotopic manner. In normal projection, temporal retinal axons project to the rostral part of the tectum, and nasal axons to the caudal part of the tectum. The two-dimensional relationship between the retina and the tectum offers a useful experimental system for analysis of neuronal target recognition. We carried out rotation of the tectal primordium in birds at an early stage of development, around the 10-somite stage, to achieve a better understanding of the characteristics of target recognition, especially the rostrocaudal specificity of the tectum. Our results showed that temporal retinal axons projected to the rostral part of the rotated tectum, which was originally caudal, and that nasal axons projected to the caudal part of the rotated tectum, which was originally rostral. Therefore, the tectum that had been rotated at the 10-somite stage received normal topographic projection from the retinal ganglion cells. Rostrocaudal specificity of the tectum for target recognition is not determined by the 10-somite stage and is acquired through interactions between the tectal primordium and its surrounding structures.  相似文献   

11.
Eph receptor tyrosine kinases and their ligands have been shown to be involved in processes of cell migration and axon guidance during embryonic development. Here we describe the development of a function-blocking monoclonal antibody against chick ephrin-A2, and its effect on retinal ganglion cell axons studied both in vitro and in vivo. In the stripe assay, the blocking antibody completely abolished the repulsive effect of posterior tectal membranes. In vivo, in a loss-of-function approach, hybridoma cells secreting the antiephrin-A2 antibody were applied to chick embryos from embryonic day 3 (E3) on, and the retinotectal projection was subsequently analyzed at E16. DiI tracing analyses showed that although the projection of both temporal and nasal retinal ganglion axons in the tectum was, overall, normal, occasionally diffuse and extra termination zones were observed, in addition to axons over-shooting their termination zones. These data support the idea that ephrin-A2 contributes to the establishment of the chick retinotectal projection.  相似文献   

12.
Guided formation and extension of axons versus dendrites is considered crucial for structuring the nervous system. In the chick visual system, retinal ganglion cells (RGCs) extend their axons into the tectum opticum, but not into glial somata containing retina layers. We addressed the question whether the different glia of retina and tectum opticum differentially affect axon growth. Glial cells were purified from retina and tectum opticum by complement-mediated cytolysis of non-glial cells. RGCs were purified by enzymatic delayering from flat mounted retina. RGCs were seeded onto retinal versus tectal glia monolayers. Subsequent neuritic differentiation was analysed by immunofluorescence microscopy and scanning electron microscopy. Qualitative and quantitative evaluation revealed that retinal glia somata inhibited axons. Time-lapse video recording indicated that axonal inhibition was based on the collapse of lamellipodia- and filopodia-rich growth cones of axons. In contrast to retinal glia, tectal glia supported axonal extension. Notably, retinal glia were not inhibitory for neurons in general, because in control experiments axon extension of dorsal root ganglia was not hampered. Therefore, the axon inhibition by retinal glia was neuron type-specific. In summary, the data demonstrate that homotopic (retinal) glia somata inhibit axonal outgrowth of RGCs, whereas heterotopic (tectal) glia of the synaptic target area support RGC axon extension. The data underscore the pivotal role of glia in structuring the developing nervous system.  相似文献   

13.
Little is known about the cues that guide retinal axons across the diencephalon en route to their midbrain target, the optic tectum. Here we show that chondroitin sulfate proteoglycans are differentially expressed within the diencephalon at a time when retinal axons are growing within the optic tract. Using exposed brain preparations, we show that the addition of exogenous chondroitin sulfate results in retinal pathfinding errors. Retinal axons disperse widely from their normal trajectory within the optic tract and extend aberrantly into inappropriate regions of the forebrain. Time-lapse analysis of retinal growth cone dynamics in vivo shows that addition of exogenous chondroitin sulfate causes intermittent stalling and increases growth cone complexity. These results suggest that chondroitin sulfate may modulate the guidance of retinal axons as they grow through the diencephalon towards the optic tectum.  相似文献   

14.
Retinal explants of mouse embryos were cultured together with explants of different regions in the retinofugal pathway in order to investigate whether ventral temporal (VT) and dorsal nasal (DN) retinal neurites showed differential responses to regional-specific cues in the pathway. In the presence of the chiasm, biased outgrowth of retinal neurites was found in explants of both retinal regions, which was accompanied by a reduction in total neurite growth in the VT but not the DN retina. Such differential responses to the diffusible negative influence were also observed when explants of two retinal origins were cocultured with the ventral diencephalon, but were not found with the dorsal diencephalon that contains targets of the optic axons. Indeed, extensive neurite invasion was found in the dorsal diencephalic explants and this ingrowth was more prominent for VT than DN neurites, showing a difference in axons from a distinct position in the retina to contact-mediated stimulatory activity within the target nuclei. We conclude that neurites from different regions of the retina show differential responses to the regional-specific cues in the diencephalon. These cues exist in both diffusible and contact-mediated forms that may shape the characteristic course and organization of retinal axons in decision regions of the optic pathway and the visual targets.  相似文献   

15.
We screened for mutations affecting retinotectal axonal projection in Medaka, Oryzias latipes. In wild-type Medaka embryos, all the axons of retinal ganglion cells (RGCs) project to the contralateral tectum, such that the topological relationship of the retinal field is maintained. We labeled RGC axons using DiI/DiO at the nasodorsal and temporoventral positions of the retina, and screened for mutations affecting the pattern of stereotypic projections to the tectum. By screening 184 mutagenized haploid genomes, seven mutations in five genes causing defects in axonal pathfinding were identified, whereas mutations affecting the topographic projection of RGC axons were not found. The mutants were grouped into two classes according to their phenotypes. In mutants of Class I, a subpopulation of the RGC axons branched out either immediately after leaving the eye or after reaching the midline, and this axonal subpopulation projected to the ipsilateral tectum. In mutants of Class II, subpopulations of RGC axons branched out after crossing the midline and projected aberrantly. These mutants will provide clues to understanding the functions of genes essential for axonal pathfinding, which may be conserved or partly divergent among vertebrates.  相似文献   

16.
Calretinin is a calcium-binding protein which participates in a variety of functions including calcium buffering and neuronal protection. It also serves as a developmental marker of retinal ganglion cells (RGCs). In order to study the role of calretinin in the development and regeneration of RGCs, we have studied its pattern of expression in the retina at different developmental stages, as well as during optic nerve regeneration by means of immunohistochemistry. During development, calretinin is found for the first time in RGCs when they connect with the optic tectum. Optic nerves from adult zebrafish were crushed and after different survival times, calretinin expression in the retina, optic nerve tract and optic tectum was studied. From the day of crushing to 10 days later, calretinin expression was found to be downregulated within RGCs and their axons, as was also observed during the early developmental stages of RGCs, when they are not committed to a definite cell phenotype. Moreover, 13 days after lesion, when the regenerating axons arrived at the optic tectum, a recovery of calretinin immunoreactivity within the RGCs was observed. These results indicate that calretinin may play an important role during optic nerve regeneration, Thus, the down-regulation of Calretinin during the growth of the RGC axons towards the target during development as well as during their regeneration after injury, indicates that an increase the availability of cytosolic calcium is integral to axon outgrowth thus recapitulating the pattern observed during development.  相似文献   

17.
In order to test the preference of growing axons for membrane-associated positional specificity a new in vitro assay was developed. In this assay, membrane fragments of two different sources are arranged as a carpet of very narrow alternating strips. Axons growing on such striped carpets are simultaneously confronted with the two substrates at the stripe borders. If there is a preference of axons for one or the other substrate they become oriented by the stripes and grow within the lanes of the preferred substrate. Such preferential growth could, in principle, be due to affinity to attractive factors on the preferred stripes or avoidance of repulsive factors on the alternate stripes. This assay system was used to investigate growth of chick retinal axons on tectal membranes. Tissue strips cut from various areas of the retina were explanted and the extending axons were confronted with stripes of cell membranes from various areas within the optic tectum. Tectal cell membranes prove to be an excellent substrate for the growth of retinal axons. Nasal and temporal axons can grow well on membranes of both posterior and anterior tectal cells. If, however, temporal axons are given a choice and encounter the border between anterior and posterior membranes they show a marked preference for growth on membranes of the anterior tectum, their natural target area. Nasal axons do not show a preference in this assay system. The transition from nasal to temporal properties within the retina is abrupt. In contrast, the transition from anterior to posterior properties of the tectal cell membranes occurs as a smooth gradient. Significantly, the positional differences of tectal membrane properties are only seen during the period of development of the retinotectal projection and are independent of tectal innervation by retinal axons. These anterior-posterior differences disappear by embryonic day 14.  相似文献   

18.
Transplantation of neural stem cells for replacing neurons after neurodegeneration requires that the transplanted stem cells accurately reestablish the lost neural circuits in order to restore function. Retinal ganglion cell axons project to visual centers of the brain forming circuits in precise topographic order. In chick, dorsal retinal neurons project to ventral optic tectum, ventral neurons to dorsal tectum, anterior neurons to posterior tectum and posterior neurons to anterior tectum; forming a continuous point-to-point map of retinal cell position in the tectal projection. We found that when stem cells derived from ventral retina were implanted in dorsal host retina, the stem cells that became ganglion cells projected to dorsal tectum, appropriate for their site of origin in retina but not appropriate for their site of implant in retina. This led us to ask if retinal progenitors exhibit topographic markers of cell position in retina. Indeed, retinal neural progenitors express topographic markers: dorsal stem cells expressed more Ephrin B2 than ventral stem cells and, conversely, ventral stem cells expressed more Pax-2 and Ventroptin than dorsal stem cells. The fact that neural progenitors express topographic markers has pertinent implications in using neural stem cells in cell replacement therapy for replacing projecting neurons that express topographic order, e.g., analogous neurons of the visual, auditory, somatosensory and motor systems.  相似文献   

19.
The spatiotemporal distribution of neural cell adhesion molecule (N-CAM) in the retinotectal system of adult goldfish was assessed by immunofluorescence using the monoclonal antibody (Mab) D3 against chick N-CAM. In immunoblots with extracts of cell surface membranes of fish brains, Mab D3 recognized a prominent band at 170K and a weak band at 130K (K = 10(3) Mr). N-CAM immunofluorescence on cells was restricted to the marginal growth zones of the retina and the tectum and, in normal fish, to the youngest axons from the new ganglion cells of the peripheral retinal margin. In fish with previously transected optic nerves (ONS), Mab D3 staining was found transiently on all axons from the site of the cut into the retinorecipient layers of the tectum, but disappeared from these axons 450 days after ONS. Growing retinal axons in vitro exhibited N-CAM immunofluorescence throughout their entire extent, including their growth cones. Glial cells cultured from regenerating optic nerves were, however, unlabeled. These data are consistent with the idea that N-CAM is involved in adhesive interactions of growing axons. The temporally regulated expression of N-CAM on the new retinal axons may contribute to the creation of the age-related organization of the axons in the retinotectal pathway of fish.  相似文献   

20.
Small aggregates of embryonic rat retina and perinatal rat sympathetic ganglia were put into culture and allowed to form axonal outgrowths. Neuritic outgrowths from adjacent sympathetic explants grew freely into one another and appeared to form common bundles; neurites from adjacent retinal explants showed a similar pattern of interaction. In contrast, when neurites from retinal and sympathetic explants confronted one another they showed a marked avoidance reaction. This response included the partial retraction of some axons, changes in the direction of their growth and, eventually, the formation of discrete bundles of a single kind of axon. In a second kind of experiment, single-cell preparations from retina and sympathetic ganglia were mixed and allowed to form aggregates. These were put into culture and the distribution of sympathetic fibres within the resulting outgrowth was detected by incubation with radioactive norepinephrine followed by radioautography. It was found that the sympathetic axons segregated from the retinal axons as they grew and formed separate bundles of predominantly one kind of fibre. It is concluded that selective fasciculation of nerve axons can occur in culture and we discuss some possible contributory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号