首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Key message

Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1.

Abstract

Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
  相似文献   

4.
5.
Zygote arrest 1 (Zar1) is an oocyte-specific maternal-effect gene. Previous studies indicate that Zar1 plays important role in early embryo development, but little is known about its function in rabbit. The objectives of this study were to clone the New Zealand white rabbit Zar1 gene and to investigate its expression in various organs in groups of animals with different reproductive traits. We obtained a 709-bp Zar1 cDNA fragment consisting of an 8-bp exon 1, 161-bp exon 2, 75-bp exon 3, 271-bp exon 4 and 194-bp 3 ' sequences. The rabbit Zar1 nucleotide sequence showed per cent identities of 91, 88, 88, 87, 86, 87, 76 and 82% with Zar1 orthologues in human, cattle, sheep, pig, mouse, rat, zebrafish and Xenopus laevis, respectively, indicating a high homology with other species and evolutionary conservation. Quantitative real-time polymerase chain reaction analyses revealed nonoocyte-specific Zar1 expression, with expression in spleen, lung, ovary, uterus, heart, liver and kidney. The expression level was highest in the lung. This study may lay the theoretical foundation for the study of ZAR1’s biological function.  相似文献   

6.
7.
8.
α-Gliadin proteins of the wheat gluten form a multigene family encoded by genomic loci Gli-A2, Gli-B2 and Gli-D2 located on the homoeologous wheat chromosomes 6AS, 6BS, and 6DS, respectively which upon partial digestion elicits celiac disease (CD) in the genetically susceptible individuals. The present investigation was planned to study the variations in the amino acid sequence of the α-gliadin proteins and CD eliciting epitopes in the Indian wheat cultivars. Representative wheat varieties released and cultivated in India during the period 1905–2011 were selected for studying the α-gliadin genes by cloning and sequencing followed by in silico analysis of the gene sequences. A lot of variation for α-gliadin gene sequences especially in T cell stimulatory epitopes glia-α9, glia-α20, glia-α2 and glia-α was observed in different wheat varieties. Modern varieties released during 1971–2011 had higher proportion of intact T-cell stimulatory epitopes. The old wheat varieties released in the period 1905–1970 on the other hand had large proportion of variant epitopes. We identified three wheat varieties namely C591, C273 and K78 having only variant epitopes at Gli-D2 and Gli-B2 and both intact and variant epitopes at Gli-A2. Identification of lower proportion of T-cell stimulatory epitopes in these three varieties is the first step towards developing a wheat variety less immunogenic for celiac disease patients. The gene sequences of the selected varieties have been submitted at NCBI with accession numbers GenBank KJ410473–KJ410488.  相似文献   

9.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   

10.

Key message

This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated.

Abstract

The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-d-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-d-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered saponin structural diversity, however, not directly to known cellobiosidic saponins.
  相似文献   

11.
12.
FATTY ACID DESATURASE 2 (FAD2, EC 1.3.1.35), also known as delta-12 oleate desaturase, is a key enzyme for linoleic acid and α-linolenic acid biosynthesis. Chia (Salvia hispanica) seeds contain the highest known proportion of α-linolenic acid in any plant sources. In this study, two full-length FAD2 genes, named as ShFAD2-1 and ShFAD2-2, were isolated from S. hispanica based on RACE method. Both ShFAD2-1 and ShFAD2-2 proteins possess strong transmembrane helices, three histidine motifs and a C-terminal ER-located signal (YNNKL). Phylogenetic analysis showed that both ShFAD2-1 and ShFAD2-2 are grouped with constitutive plant FAD2s. Heterologous expression in Saccharomyces cerevisiae indicated that ShFAD2-1 and ShFAD2-2 genes both encode a bio-functional delta-12 oleate desaturase. ShFAD2-2 was mainly expressed in flowers and early-stage seeds while ShFAD2-1 expression was almost constitutive in different organs. qRT-PCR results demonstrated that ShFAD2-1 and ShFAD2-2 show a cold-induced and heat-repressed expression pattern, whereas they also were differentially up-regulated or repressed by other abiotic stresses. This is the first cloning and function characterization of FAD2 from S. hispanica, which can provide insights into molecular mechanism of high ALA traits of S. hispanica and enrich our understanding of the roles of FAD2 genes in various abiotic stresses.  相似文献   

13.
14.
15.
16.
The Polycomb Group protein EZH2 is upregulated in most prostate cancers, and its overexpression is associated with poor prognosis. Most insights into the functional role of EZH2 in prostate cancer have been gained using cell lines and EZH2 inactivation studies. However, the question remains whether overexpression of EZH2 can initiate prostate tumourigenesis or drive tumour progression. Appropriate transgenic mouse models that are required to answer such questions are lacking. We developed one such transgenic mouse model for conditional overexpression of Ezh2. In this transgene, Ezh2 and Luciferase are transcribed from a single open reading frame. The latter gene enables intravital bioluminescent imaging of tissues expressing this transgene, allowing the detection of tumour outgrowth and potential metastatic progression over time. Prostate-specific Ezh2 overexpression by crossbreeding with Probasin-Cre mice led to neoplastic prostate lesions at low incidence and with a long latency. Compounding a previously described Bmi1-transgene and Pten-deficiency prostate cancer mouse model with the Ezh2 transgene did not enhance tumour progression or drive metastasis formation. In conclusion, we here report the generation of a wildtype Ezh2 overexpression mouse model that allows for intravital surveillance of tissues with activated transgene. This model will be an invaluable tool for further unravelling the role of EZH2 in cancer.  相似文献   

17.
18.

Key message

Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed.

Abstract

Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
  相似文献   

19.
20.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号